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WAVEGUIDES FILLED WITH MAGNETOPLASMAS OF VARIOUS TYPES

Wave propagation in a linearized, homogeneous magnet,plasma

of bounded and unbounded regions has been investigated in detail°

Plasmas of various models are considered in order to evaluate the

effects of electron temperature and of the resonances on the waves.

In this thesis three models are studied: the usual incompressible

model, the compressible fluid model and a microscopic model. The second

model is based on the transport equations and the third on the Boltzmann

equation with an assumed Maxwellian velocity distribution at equilibrium0 i

Waves in a circular waveguide filled with either incompressible

or compressible plasma are analyzed under the boundary condition that

the tangential electric field is zero and for the latter case the normal

electron velocity is zero on the guide wail. When the static magnetiz-

f

ing field is parallel to the guide axis, the modal waves can be expressed

in terms of known functions. The longitudinal propagation constants

for both models are numerically evaluated and compared° In the case

of the compressible plasma, the electroacoustic waves are coupled to

the optical waves through the magnetizing field and the boundary

conditions. As a consequence the propagat on constants are found to

consist of two types, The first can be dentified as those of the

incompressible model, but slightly perturbed Modes of the

second . type arise from the compressibility of the plasma and the

assumed boundary conditions for the electron velocity, For the second



type, since the acoustic speed is much smaller than the light speed,

the permissible propagation constants are so densely located in the

Brillouin diagram that they resemble a continuous spectrum.

Modal fields due to a source in the waveguide filled with

compressible or incompressible plasmas are formulated. The relationship

between the power and the impedance of an antenna in the guide is

determined. A numerical example is given for the resistance of a small

antenna in the guide filled with incompressible plasma.

Finally, the case of oblique static magnetizing field to the

guide axis is discussed. Unfortunately, the modal fields for this

case cannot be represented by known functions.

|

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I



l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

iii

ACKNOWLEDGMENT

The author is greatly indebted to her advisor Professor Y. To Lo

for his friendly encouraging and guidance throughout this research_ She

is als_ equally grateful to Professor G. A. Deschamps, the head of the

Antenna Laboratory of the University of Illinois for his valuable remarks

on this work. She would also like to extend her thanks to Mr. M. Chen

who did the computer programming of this study.

It is also a pleasure to acknowledge that this work is supported

by the National Aeronautical and Space Administration under Grant NSG 395.



iv

TABLE OF CONTENTS

Paqe

I ° INTRODUCTION ......................... 1

II. DISPERSION RELATIONS FOR VARIOUS PLASMA MODELS ........ 12

2.1 Field Equations for a General Case ........... 12

2.2 Field Equations for Cold Plasma ............. 17

2.3 Field Equations for Warm Plasma Based upon the Transport

Theory ........................ 20
2.4 A Modification of the Warm Plasma Model ......... 36

III. FIELD EXPRESSIONS IN ANISOTROPIC PLASMA AND CHARACTERISTIC

EQUATION OF THE CIRCULAR WAVEGUIDE FILLED WITH LONGITUDINALLY
MAGNETIZED PLASMA ...................... 46

3.1 Derivation of Field Expressions in a Cold Plasma .... 46

3,2 Derivation of the Characteristic Equation for the Wave-

guide Filled with Cold Plasma .............. 52
3.3 Derivation of Field Expressions in a Warm Plasma .... 54

3.4 Derivation of the Characterisitc Equation of the Wave-

guide Fi]led with Warm Plasma ............. 65

IV.

V.

ORTHOGONALITY PROPERTIES AND POWER RELATIONS ......... 77

SOLUTIONS OF CHARACTERISTIC EQUATION WHEN THE dc MAGNETIC

FIELD IS PARALLEL TO THE GUIDE AXIS ............. 89

5. I Cold Plasma Case .................... 89

5.2 Warm Plasma Case .................... 93

VI. MODAL WAVES CLUE TO A CURRENT SOURCE IN THE WAVEGUIDE ..... 117

VII, ANISOTROPIC COLD PLASMA FILLED WAVEGUIDES WITH THE dc

MAGNETIC FIELD OBLIQUE TO THE GUIDE AXIS ........... 136

VIII. CONCLUSIONS .......................... 145

APPENDIX I. ENERGY RELATIONS AND RESTRICTIONS ON THE MATRIX (K) 148

APPENDIX II. THE DERIVATION bF THE MATRIX (K) ACCORDING TO THE

BOLTZMANN EQUATION APPROACH ............... 154

LIST OF REFERENCES ....................... _ • .. 168

...... . .... 0 * * • • * • * • • • . * * ° * ° * • * • * • • , •

170



I

!
I
I

I
I

I
I

I
I

I
I

i

I
I
I

I

I

I. INTRODUCTION

Ionized medium in the presence of adc magnetic field, namely,

magnetoplasma has been subject of intense interest in recent years. Most

investigations have been devoted to wave propagation in plasma of un-

bounded regions. Since the laboratory produced plasmas are confined to

small finite regions only, often comparable to the free space wavelength

of interest, it appears to be appropriate to investigate waves in a

waveguide filled with anisotropic plasma. But the complication in such

a problem arises from the requirement of setisfaction of certain boundary

conditions.

When a wave propagates in an anisotropic plasma medium, very

complex physical processes take place. In order to gain Some theoretical

understanding of the phenomena, as usual, various idealizations are

imposed on the system and thus result in different plasma models. These

idealizations are used to simplify some aspects of the medium, such as

the governing equations, convection currents and interactions of different

species of ions, the Brownian motion of charged particles, the homogeneity

of the medium, the boundary conditions on the conducting walls, etCo

The simplest mathematical description of the waves in plasma

consists of the Maxwell equations, the continuity equation of the mas_

flux, and the equation of motion for a single particle. Even for such

a simple model, the solution is exceedingly difficult to obtain due

the nonlinearity of the equation. It is usually assumed that the medium

is at equilibrium and the RF signal is so weak t ha t _t h:e. perturbations



of the medium are small enough to validate a linearized theory. Moreover

often only the i:on convection current which is due to electrons is con-

sidered, because of the high mobility of the electrons as compared with

other ions. Collisions among charged particles are also very complicated

phenomena; however, since collisions among particles of the same species

result in no net change of momentum, sometimes their effect is neglected

altogether, particularly when the wave frequency is high. Other times a

simple correction may be obtained by replacing the electron mass m by
e

a fictitious mass me(l-j v/_ where v is the so-called collision frequency.

For a low temperature plasma the thermal motion of the charged

particles may be ignored. This results in the wel! known cold plasma

model(1)which has been successfully used to explain many ionospherical

phenomena. However, near resonance the wave velocity becomes close to

zero, so that neglecting the thermal motion ceases to be a good approxima-

tion. TO take into account the thermal motion, the plasma is generally

treated as a compressible fluid. A new quantity, namely the pressure

must be used to describe the magnetoplasma somewha_ more precisely. For

this new unknown it is necessary to add an equation, usually the equation

of state, to those already stated. This constitutes the so-called

transport theory of a warm or compressible plasma model. From a more

precise microscopic description of the plasma, namely the Boltzmann

equation, it is known that even for such a model, the low temperature

approximation has been implicitly used. Nevertheless, because of the

introduction of compressibility, new phenomena, such as the electroacoustic

waves, may be explained.
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In the warm plasma model, phenomena which are associated with

the velocity distribution of charged particles are not included. For

a:more precise description the Boltzmann equation may. be employed. The

first two moments of this equation over the velocity space reduce to

the equations of conservation of particles .and momentum or the continuity

equation and the equation of motion. The third moment equation relates

the pressure tensor and the heat flow triadico(2)By negtectin 9 the

Iatter and assuming the pressure to be a scalar which is related to

the particle density through the equation of state, one obtains exactly

the.transport theory of a-warm plasma model. The Bottzmann equation is

an equation for the one particle distribution function,.which is difficult

to solve, because of, among other difficulties, the lack of knowledge

of the collision integral term. By assuming that the Collision integral

is simply proportional to perturbed velocity distribution function (although

this.assumption is not compatible with conservation of the number of

particles), assuming some linearization to the equation, Allis,

Buchsbaum and Bers(3)were able to obtain an approximate solution to the

dispersion relation. However, their results are limited to the case of

very high magnetizing field and low temperature and also not valid for

arbitrarily large wave number.

.In this thesis the aforementioned three models wit1 be con-

s idered.and tater applied to a plasma fitted circular waveguideo

However, because of the complexity of the third model, most of the

numerical results.are evaluated for the first two models only. The
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necessity of considering the warm plasma model arises from the fact

that at resonance the electron thermal velocity can no longer be ignored

as stated earlier.

Waves guided in parallel planes, rectangular and circular

pipes filled with magnetoplasmas or ferrites have been investigated by

many authors. Unz (4) studied the paralle! plates filled with a ferrite

magnetized in an arbitrary direction and obtained a characteristic

equation for the propagation constant which must be solved with a com-

puter. Kales, Cherit and Sakiotis (5) and later Brazilai and Gerosa (6)

investigated the anisotropic rectangular waveguide. In this case only

when the dc magnetizing field B is perpendicular to the guide wails,
_0

and a11 fields are independent of the coordinate along NoB , the

E- and H-waves become uncoupled, and thus the problem can be easily

solved. The dual to this problem, namely when the plasma is replaced

by ferrite was considered by Ka|es. He also studied the case when _Bo

was paralle| to the guide axis (7) and found _at there exists no un-

coupled TE or TM waves except at cut-off. For the latter the cut-off

(8)
frequency can be easily determined. Later Epstein considered the

circular guide and obtained modal solutions in terms of known functions,

if BO is paraIIe! to the guide axis; however, he gave no numerical

results.

For anisotropic circular waveguides with axial dc magnetiza-

tion, a small number of numerical solutions for the cut-off frequencies

and the propag_tion constants have been obtained by various authors.
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Two of these works give significant results. Suhl and Walker (g) fol]ow

a very invo]ved approach. Their report which is mostly concerned with

ferrite filled guides gives severa] diagrams for cut-off frequencies

as well as for propagation constants+ They use two parameters one of

which would correspond to the inverse of Y for an anisotropic plasma.

Naming the modes according to their limiting forms when B become

zero, they obtain results for T Eli, TEl2 and TMII modes+ They work on

magnetopiasma filled guides also, and give one curve for the cut-offs

of the TEll mode. A systematic work considering cold plasma is given

by Bevc and Everhort.(IO) They name the modes according to their cut-off

forms. Their report includes several diagrams of cut-off frequencies

for modes with the first three indices of angular dependence and the

first three solutions for each angular index= Also Brillouin diagrams

for TM01, TM02, TMI], TE01 and TEll modes are given.

In his paper on axially magnetized plasma fil]ed waveguides,

Willet(11)considers the effect of a pressure gradient. He as_mes that

on the conducting boundary the tangentia] electric field, the normal RF

magnetic field and the norma] convection current components are zero.

Actual]y his assumption for the magnetic fie]d is the direct result of

the assumed condition on the electric field. In his momentum equation

the electric field does not p]ay any role° In his so-ca]led genera]ized

OhmZs law, on the other hand, the net effect of B comes out to be zero.

He adds a resistivity term which should correspond to collisions. After
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dropping some terms he obtains his approximate equations and finds TE

and TH modes for guide of arbitrary cross section. Then he gives

examples, namely for rectangular and circular cross sections.

Several studies have been made regarding the power and

orthogonality properties of model waves in anisotropic media.

Buchsbaum (3) analyses the power carried in anisotropic guides for two

models, namely the cold and the warm plasmas. Collin in his book (12)

indicates that if an anisotropic guide shows reflection symmetry, simple

orthogonality relations exist among modes.

The purpose of this work is first to reformulate the problem

of anisotropic waveguide in a unified but simpler and more straight-

forward approach than those taken by other authors; second to study the

waves in a warm anisotropic plasma; third to determine the wave propaga-

tion characteristics in a circular waveguide filled with plasma and

fourth to determine the effect of plasma temperature on propagation

characteristics. We also consider an anisotropic waveguide wlth an

oblique magnetization in order to determine whether modal solutions in

terms of known functions can be obtained.

In thls thesis a general expression for dispersion relation of

an anisotropic plasma is derived and then applied to three different

plasma models, namely the incompressible, the compressible fluid model

and the one obtained by using Boltzmann_s theory. In all these cases

we have made use of the assumptions discussed at the very beginning,

It is found that the compressible fluid model brings forth• some modifica-
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tions to the cold plasma index surfaces. Also the results obtained from

the Boltzmann's theory showed that, the compressible fluid plasma refrac-

tive indices need some modifications for frequencies very close to the

resonances of the electrons.

For the waveguide the boundary condition is assumed to be that

the tangential electric field on the conducting surface vanishes for all

models. In the case of warm plasma model, it is further assumed that

the normal component of the convection current vanishes on the conduct-

ing surface°

The power, impedance and orthogonality relations of waves in

the anistropic guide are studied in rather general terms for both in-

compressible and compressible models_

For circular waveguides with axial magnetization, it is found

that simple orthogonality relations can be derived for the warm plasma

as well as for the cold plasma°

As for the propagation constants of the guide it is interest-

ing to find that they can be divided mainly into two types_ First,

there are some solutions of the characteristic equation of the warm

plasma model, which differ little from those for the cold plasma model;

in fact, they reduce to the latter as the plasma temperature approaches

zero° ro the second category belong solutions which are stronly dependent

on the guide parameter and may vary widely for a small change in frequency

Fields associated with the modes of the aforementioned three

types of propagation indices have been studied° It is found that fields



of the first type have a form somewhatmodified from that of the

corresponding fields in the cold plasma model. The only significant

difference appears in the radial electric and azimuthal magnetic field

components. The fields of the second type have their main contribution

fromthe plasma waves and behave like a TEMmode, although it is a

combination of three fields each of which has different transverse

propagation constants. These fie]ds correspond to the ordinary,

extraordinary and plasma waves. For all the three cases, the convection

current is axial, and the RFplasma density as well as the convection

current are mainly supplied by the plasma wave.

Since in axially magnetized waveguides only the fields with

real and purely imaginary axial propagation constant j_ contribute to

the real and reactive power respectively, the subsequent investigation

on the roots of the characteristic equations is confined solely to these

two kinds. To facilitate the computation it is further restricted to

the solutions of the case where the characteristic equation is real.
2

It is found that along the real axis of y , only certain regions satisfy

this condition. For a cold plasma, with given values of X and Y, the

numberof these regions can be at most two. For warmplasmas, with

fixed temperature, X and Y, the maximumnumberof these regions is

three. The lower and upper bounds of these regions do not depend upon

the normalized radius 2_ro/k nor the azimuthal behavior of the fields

but they depend upon X, Y and temperature only. For cold plasma, with

0 < X ( 3 and 0 < y ( 2, these bounds are computed. For both cold and

warm models with fixed plasma density and B , the axial refractive index
...o
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is numerically determined as a function of the normalized radius, or

the frequency for a given radius. The results obtained using the exact

form of the characteristic equation of the warm plasma are found to be

in perfect accordance with those which the study of an approximated

characteristic equation predicts. General expressions, for the input

impedance of an antenna placed in the guide filled with either a cold

or a warm plasma, are derived in terms of assumed distribution of the

current and the pressure. For an example the input resistance of a probe

is numerically determined using the cold model.

For B oblique to the guide axis the field equations are studied
_-o

in the case of co|d plasma. It is found that the solutions can be

expressed in terms of infinite series and the determination of the co-

efficients of these series is very complicated, even for the case of

uniaxial plasma.

The first chapter of this thesis deals with the general

dispersion relation which is applicable to the three aforementioned

plasma models. A short comparative study of these three cases is also

given. In Chapter II, field expressions of both incompressible and

compressible fluid models are given in general terms. The boundary

conditions of the waveguide are imposed and the characteristic equations

for the case of axial magnetization are obtained. These equations, as

well as the fields corresponding to their solutions are compared in

order to determine the effect of plasma temperature. Chapter III is



concerned with the orthogonality and power relations of a warm plasma,

including the cold plasma as a special case. In Chapter IV, numerical

results are given for cold and warm plasmas. The derivation of the

impedance of an antenna in the waveguide is studied in Chapter VIfor t_

warm plasma, again including the cold plasma model as a special case.

Using the cold model, the radiation resistance of a probe is computed.

In Chapter VII, awaveguide with a B oblique to its axis is studied.

The study of the dispersion surfaces, the field expressions,

characteristic equation, orthogonality and impedance relations for the

warm plasma model and their comparison with those for the cold plasma

can be summarized as follows:

Part of the solutions for the warm plasma model are slight

modifications of those for the cold plasma model; whereas the remaining

ones are essentially attributed to the plasma pressure waves. At places

where two of the three characteristic waves have their wave number or

thei F wave number and field strength of the same order of magnitude,

hybrid solutions take place. Infinities or zeros of the cold plasma

results, however, are considerably modified by the temperature effect.

For example, the infinities of cold plasma index surfaces become finite

and, instead, at that angle there are a real and an imaginary propagation

index with almost equal magnitude; as another example, the so-called

TE cutoff wave of the cold plasma mode is replaced with a TM warm plasma

mode.

10
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Although the compressible fluid mode! is an improved description

over the cold plasma model, other phenomena which are associated with

the velocity distribution of electrons are stiI! ignored. In the first

Chapter, by using the BoItzmann equation approach it is found that the

propagation transverse tO Bo may yield arbitrarily large refractive index

near gyroresonance or its multiples. A more precise and complete study

of the BoItzmann equation is rather complicated and it seems that only

a numerica! approach would be possible.
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II. DISPER'SION RELATIONS FOR VARIOUS PLASMA MODELS

2.1 Field Equations for a General Case

Let us assume that we have a medium filled with an anisotropic

dielectric with a relative permeability dyadic K or matrix (K)

'(K) =

m

K K K
xx xy xz

K K K
yx yy yz

K K
zx zy

P },c
Let us further assume that we have

K
ZZ

(2-i)

K =- K ;
xy yx

Kxz : KZx,

K = - K

zy yz

(2-2)

(2-3)

(2-4)

If the medium is 1ossless, the matrix (K) becomes Hermitian

(Appendix I).

The Maxwell Equations for this medium are:'/_/¢

*In our study we will consider only the media with the property given by

Equations (2-2) through (2-4).

**In this study the following notations will be used to denote partial

derivatives :

d t - a/Bt

d --, _/ax
x

Y
• . • • • , 0

d -. 82/_x_y
xy

dxx -' B2/Bx 2

d _ 8/8v
V

d -_ alaw
w
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I

Curl -d - _'= -dtl_ 2- _ (2-6)

Solving for~_ in absence of sources (_9-= :_l_= O) we get

(grad div - V2)_-cc= -dtt t_° ¢o K "_ (2-7)

Let us apply Fourier transforms to all the quantities with

respect to t and z such thatthe transform will take the time variable t

to the angular frequency _ and the spatial variable z to - jyjy being

the propagation constant along the z axis. Denote the Fourier transforms

of_andl_ as E and H respectively. Then in the transformed domain

Equation (7) becomes

where

where

g • E = 0 (2-8)

-d
YY

(g)= d
xy

Yd x

2
-y dxy Yd x

2
-d -%,

xx ydy

ydy -d -dxx yy

- (k) (2-9i

2
k = k K (2-I0)

0

where
2 2

ko = w eol_ ° (2-11)

From the set of Equations (8), (9), and (10) one obtains

E. = 0 i = x, y or z. (2-12)
I

where _ is the operator which can be represented a_ the determinant of the

coefficient matrix of Eqs. (8), (9), and (lO).*

*Since in Eqs. (8), (9), and (lO) the operations involve differentia-

tions, multip|ications and additions only, and since these operators are

commutative, excluding the division, the rules of algebra can be applied to

solve the system of linear equations. Then with a |ittle manipulation,
one arrives at Eqo (13).
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Let the terms of matrix (g) be defined as follows:

(g)

m

aI a2 a3

b
1

c I

b2 b3

c 2 c 3

and the cofactor matrix of (g) as

(2-13)

tions: _',-

(G)

m

AI A2 A3

B1 B2 B3

C1 C2 C3

(2-14)

Using the above definitions one can write the following equa-

A I E = A2 Ex,Y

A I Ez = A3 Ex'

A2 Ez = A3 Ey,

BI E = B2 Ex,Y

BI Ez = B3 Ex,

B2 Ez = B3 Ey,

(z-iS.l)

(2- 15,2)

(z-is.3)

(2=16.1)

(2- 16.2)

(2- 16.3)

_"The indicated results have been derived on the same line of reasoning

as explained in the footnote of Eq. (13).
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C1E = C2 Ex,Y
(2-1701)

C I Ez = C3 Ex, (2- 17.2)

C2 E = C3 EyZ
(2-17.3)

Therefore, the general solution of Eq, (2-7) can be given as:

A1"r = 0 (2- 18o ])

^
E = e i G _ (2-18o2)

The above defined scalar function _ can be called the potential function

of the field in the magnetoplasma.

where e i can be chosen.as any of the unit base vectors°

Because of their comparatively shorter expressions in this work

we will be dealing with CI, C2 and C3 rather than with the other elements

of (G). Namely, in applying Eq° (2-18.2) we will choose

A A
e. = Zo

I

The expressions for Ci's are given below:

2

C 1 =. YdxV t -. ky z dxy k d yk d + yk d" xz xx xy y yy y

,y3dx (y2 kyy)
+ - + k +k k

xz xy yz
(2-18,t)



where

16

- d - k d + d + d
C2 = 3(dy _Tt2 kxz xy yz yy Ykxy x _(kxx y

+ _3d - k k _ (y2 + k ) k (2- £8.2)
y xz xy xx yz

: _2_/t d + k d + (y2 + kxx)(y2 + k )C3 2 + kyy YY xx xx yy

+ k2 (2-t8.3)
xy

2 + d (2- 19)
_7t = dxx yy

The expression for _ can be given as

2
= [-2ykxz d - k k - kx xx yy xy

+ k 2 d - k2 d
xz xx yz yy - (kxxdxx

- y2kzz ] _t 2

2 + kzz)+ kyydyy] (3(2 + Vt

+ 2_,E-(3(2 + kyy)k + k kxz xy yz]dx

2 2 - k 2 - (kxx + k )kzz 3 - D (2-20)4 + 3( [kxz yz- 3( kzz yy

where

-D = -2k k k + k k 2 ., k k 2 - k k k - k2 k
xy yz xz yy xz xx yz xx yy zz xy zz

includes differentiation.s of 6th order. Fourier transEormed

forms of Eqs. (2-5) and (2-6) would yield 6 linear equations in terms

of Hx, Hy, Hz, Ex, Ey, Ez and the determinant of the coefficients of

these equations would involve derivatives of 6th order. Therefore, this

determinant must be equal to &. Hence, Eq. (2-12) can be generalized as

_F = O, (F = Ex, Ey, Ez, Hx, Hy or Hz )"
(2-21)
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2.2 .Fi¢ld Equat!gn$ For Cold Plasma

For a cold pJasma with a uniform dc magnetic field _o' the

convection current carried by the e]ectrons can be elimina._d_= from the

Haxwel! equations by first solvin 9 this current in terms of the electric

field, namely the generalized Ohmls law:

J = ¢o X • E

and then defining the dyadic K of relative permeability as

K=I+X

where I is the idemfactor.

In case one takes the z axis paralle1 to_ and considers

only the contribution of electrons to the convection current, one finds

that the matrix (K) reduces to

(K) =

m

K K 0
xx xy

-K K 0
xy xx

0 0 K
ZZ

where

K = I - [x(I-jZ)]/E(I-jZ)Z-Yz]
XX

Kxy = j X_/_[(I-jz) Z-_fz]

(2-22°1)

(2,,22.2)

(Z-22.3)

where

K =K
yy xx

K : i - x/(1-jz)
ZZ

X = Ne2/CmeoJ ) : 'q_/O_2

(2-22.4)

(2-22.5)

(2-22,6)



8

]8

y = eBo/mW = WH/W (2-22°7)

Z = v/_ (2-22.8)

N = electron density

Bo - I_I

v = the average collision frequency of electrons

m = mass of electron

-e = charge of electron

(_N = angular plasma resonance frequency

WH = angular gyroresonance frequency.

In this case the expression for A becomes

• y2 (kzz/kxx) ]Vt 2= - k {_/t4+[_(2 + k + k + (k 2/kxx) +
xx zz xx xy

+ y4(kzz/kxx ) + 2y2kzz + (D/kxx)] (2-23)

where kxx _ kxy, kzz and D depend on the plasma parameters only.

Using the following definitions:

2. 2/kxx )_f + kzz + kxx + (kxy + 3(2(kzz/kxx ) = 2 P (2-24°1)

4 + (D/kxx) = Q (2-24.2)(kzz/kxx) + 2y2kzz

2 (2-24,3)
v1,2 = p __ (p2 Q) 1/2

This is the dispersion relation for the cold plasma giving the

transverse component of the refractive index in terms of the longitudinal

component.

EQo (2-18) assumes the following form _t"

-kxx(%/t 2 + vt 2) (%/t2 + v22)_ = 0 (2-25)

*The dual of this result for a gyromagnetic medium coincides with the one

given by Epstein.(8)

I
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or

Eq. (2-25) implies that either

(V2t + v_),_, = O.

(V2t + v_)_= O.

If we let the solution of Eq. (2-26) be

(2-26)

(2-27)

_I = fl (x'y)eYz

and the solution of Eq. (2-27) be

_2 = f2 (x'y)eYz

then because of the iinearity of Maxwell equations

(_-28)

(2-29)

TT = [61fl(x,y ) + 62f2(x,y)] eYz (2-30)

where 61 and 62 are constants.

For cold plasma the elements of the third row of ((1) become:

C l = y d x V2t - _,kxy dy + ykyy idx + y3d x (2-31.1)

2 3

C2 = y dy Vt + Ykxy d + _(kxx d + y d (2-31.2)x y y

C3 = (y2 + kxx) V_ + (y2 + kxx)2 + k2
xy

(2-31.3)

Since according to Eqs. (2-26) and (2-27) together Eq. (2-18)

2 2 o
EI;j = -vj Ei-,j j = 1,2 (2-32)V t

hence, C3EIj has the following somewhat simpler form:

C3 Eij = q Eij; (j = 1,2) (2-33)

where q is a constant.



2.3 Field Equations for Warm Plasma Based Upon the Transport Theory

The K which will be used in this section is given in terms of

the propagation vector k. Therefore, the equations to be considered

have to be worked out in a Fourier trensformed domain, not only for the

variables t and z but also for the variable x. In this case without

the loss of the generality the x axis is chosen to be parallel to the

plane formed by the z axis (which is parallel to BBo) and the propagation

vector k. Therefore, the variable y does not come into the picture°

Due to the temperature effect the electrons have a velocity distribu-

tion function f which determines the density of the electrons N as a

function of their velocity v according to the following equation

dv dv
dN = f(v) dv x Y z

equat ion

Therefore, the convection current I will now be found via the

I : -e,JJJv f dv dv dv
_ x y z

The equation of electron motion used in obtaining the K of the

cold plasma has now to be replaced by the Boltzmann equation

) IB)dtf + v _/f - (e/m (E + v x (df/dvJ : (5f/at) (2-34)

coll is ions

From the solution of this equation one can determine the con-

ductivity dyadic X for the Ohm's law:
m:

20
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where

I = e X • E. (2-35.1)

K = I + X. (2-35.2)

There are two methods for the determination of X. In the

following we shall consider the first while the second method will be

postponed until the next section. In essence the first is to replace

the microscopic description of the plasma, which is expressed with the

velocity distribution function and the Boltzmann equation, by a macro-

scopic one. This is usually achieved by taking various moments of the

Boltzmann equation over the velocity space. Unfortunately, each time a

higher order moment is taken a new macroscopic quantity is introduced

and the complexity also increases very rapidlyo In practice this method

is seldom carried beyond the second moment, which leads to the equation

of the conservation of momentum with a newly introduced hydrodynamical

quantity, the pressure tensor. For a simple approximate theory, the

pressure is assumed to be scalar and related to the density through the

equation of state. This constitutes the so-called Boltzmann transport

theory.

In following this procedure, one first multiplies the equation

by I and v respectively and integrates over the velocity space, then

obtains the following transport equations

e dtN - _V " _.I = 0 (2-36)

-(m/e)d t I + _/ • P + NeE - I x B = 0 (2-37)
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where P is defined as

where

p =W '|n m V vf d_v dv dv ,

JJJ _- x y z

For simplicity usually P is assumed to be a scalar

P =PI

I

I

I

p = N_ (2-38) i

and

• _, = (e + 2)/_ . (2-39)

Here _ is the number of degrees of freedom of the motion of the electrons.(13)

From the set of the five equations, namely Eq_ (2-36), (2-37),

and (2-38) together with the Maxwell equations two of which are scalar

and three of which are vectorial one can eliminate the quantities N,

P and I and obtain Maxwell eq_ations with the modified K which is

defined by Eqs. (2-34) and (2-35). The expression for the matrix (K) is

(K) = I-F(n).

m

1-Wn j Cl-Wn )

-jy(l-Wnp 2) 1-Wn2

Wnpn t jYWnpn t

Wnpn t

-] YWnpnt

l-wnZt-v2

(2-40.1)

where I is the identity matrix,

F(n) = X /[l-y2-W(n2-y2np2)]

W .= J, k T ¢oPo/m = (a/c) 2

(2-40.2)

(2-40.3.1)

I

I

I
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= acoustic speed in the medium

= Boltzmann's constnat = (1.3804) lO'16erg/°K

or

W = (!.686) !o-IO_,T (2-40.3.2)

n = j y/k (2-40.4)
p o

nt = kt/ko (2-40.5)

2 2 2
n = n + n (2-40.6)

p t

k t, in the present case is the propagation constant in the x

direction. Thus we assume that al1 fie]d quantities vary as

exp [-j (ktx + k z) ].P

Now inserting Eq. (2-40) into Eqs. (2-20) and (2-21) and then

using Eq, (2-12), one gets the dispersion relation of an unbounded warm

plasma : *

W(1-y2Cos2O).n6+[(-l+y2+x-xy2Cos2e)+2W(_l+y2Cos2e+X) ]n 4

+ [(2-2y2+xy2+xy2Cos2B-4X + 2X 2) + W(I-y2Cos2_2X+ X2)]n 2

whe re

+ (-I+y2+3X-XY 2 -3X 2 +X 3) = O. (2-41. l)

Cos e = np/n,

e being the angle between the propagation vector and B .
• ,,4:)

2
Replacing Cose in Eq. (2-41) by (-Cose) gives the same n

This shows that the refractive index surfaces are symmetric with respect

to the plane z = O.

*Another form of this equation with (l/n) is given by Seshadri (14)

(2-41.2)



In order to put Eq. (2-41) into a more convenient form for the

analysis of a waveguide one can use Eqs. (2-40.6) and (2-42)i and get

Wn_ + {=[-I+X+Y2] + W['2+2X+(3"y2)n2]]n4pt

+I+W(2"4X+2X2+Xy2" 2y2) + (-2+2 X" XV2+2 Y2_rl_] 1[(I-2x+xZ)+(-4+4X+2Y 2)n2 + (3-2Y 2)n4 ]

P P

2

nt

+ II+(_f[(_I+3X_3X2+X3_Xy2+y2)I+X_Xy2+ Y2)N_ ] + (2"4X+2X2+2Xy2-2y2)n_ 1

FW[(I.2X+X2-y2)n 2p+(-2+2X+2y2)n 4p + (1-y2)n_]; = 0

which can also be written as

(2-42)

W(.I-y2)n6P+If (-I+X'XY2+Y2) ]
W[(-2+2X+2Y 2) + (3-2Y 2)n_ ]I

4
n
P

+I+W[(2_.4X+2X2+2Xy2_2y2) + (_2+2X_Xy2+2y2)n_] 1
[(l-2X+X2_y 2) + (-4+4X+2y2)n_ + (3-y2)_lnt4

n2

I[ ("I+3X'3X2+X3"Xy2+y2)+(2-4X+2X2+Xy2"2y2)n_ +(I+X+y2) n; ]I=

_+W[(I-2X+X 2) + (]-2X+X2)n 2 + (-2+2X) 4 + 6]t nt nt j

(2-43)

24
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Equations (2-41), (2-42) and (2-43) are but three different

expressions of the same dispersion relation. Eq. (2-4l) is given in the

polar coordinates (n, 8) whereas (2-42) and (2-43) are in the rectangular

coordinates (nt,np). All these three equations are of the form

G3 t 3 + G2 t 2 + Gtt + GO = 0 (2-44)

2 2 2
where t can be n , n t or n and G.°s are polynomials of the parametersp i

Cos2g 2 2, n or n respectively.
p t

The roots of Eq. (2-44) can be expressed explicitly with well

known formulae.

Since in practice W <<1 which implies that

G3 << 1 (2-45)

some approximations for the roots of Eq. (2-44) can be made. Because

all G's contain a term of at most the first degree in W one writes

G.(i = O, 1, 2, 3) as
I

G. = Gio + WG._w with G30 = 0

Considering inequality (2-45), in the regions of 8 where

IWn21,21<<l (2-46.1)

and

2 21pl(n2z- n2)/n I arbitrarily small. (2-46,2)

The roots of dispersion relations which is summarized with Eq.

(2-44) reduce to simpler expressions as given below:



t] = [-GIo + (G_(_ 4G20Goo) I/2]/(2G20 ) + 0(G23) _

2 _ 4G20Goo) I/2]/(2G20) + 0(G23 )t 2 = [-G]o - (GIo

t 3 = -(G20/G 3) + O(G 3)

2 0
for GIo-4G2oGo0>

(2-46.3)

2 1/2 (G23)t ! = [-GIo + j (4G2oGoo-GIo) ]/(2G20) + 0

2 i/2 (G23)t2 = [-GIo - j (4G2oGoo-GIo) ]/(2G20) + 0 for GIo-4G2oGo0<O

t 3 = -(G20/G 3) + O(G 3)
.J

If one neglects the terms 0(G23 ), the expressions found for t 1

and t2 become the same as those for a cold plasma. However, this happens

only in regions of 0 where inequalities (2-46.1) and (2-46.2) hold.

(2-46.4)

Thus, for @ not in these regions t

equal to the solution of the equation

I and t2 are approximately

26

(2-47.2)

G20t2 + G!ot + GO0 = 0 (2-47. I)

which is found to be the dispersion relation of cold p!asma, Whereas t3

is the solution ofY-

G3t + G20 = 0

For the cold plasma limit where W = O, G3 becomes zero and t3

approaches infinity.

_'-These results agree with the solutions obtained by Seshadri (14)
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Using Eqs, (2-41) and (2-47) and assuming that G20 is not small,

one finds for the third index surface

(n_) - (I/W)[(I-Y2)/(I-y2Cos2e) - X].

This surface is asymlPtolic to the one

ICos e f = l/Y for Y > 1. (2-48.1)

.... 'I

I
!

For some value of 8, say 91 which satisfies

Cos281: = (-I+y2+x)/(Xy 2)

G20 becomes zero. Comparison of Eqs.

for Y >l

(2-48.2)

(2-48.1) and (2-48.2) gives that

!

I
8=91 if

or if

81 < $o .

The cold plasma, refractive index surfaces go to infinity for

I) X > ]; yZ> 1 (_-49.1)

2) X _ l; y2 _ 1; y2 + X Z I. (Z-49.2)

!
!

For the compressible fluid model, however, very, large values of n for

0 = e 1 can be obtained and are approximately given by

n4 = X(I-X)(-I+2X+y2)/[W(i-Y 2) ]; Inl>>i=. (2-50)

!
I
!

This expression is positive for

I. y2>l; X>!

II. y2 ..> 1; y2-2X > 1; X < O;

(2-51.1)

(2-51.2)



III -I < y2 < I; 0 < X < i; y2 -2X > I; (2-51.3)

IV y2 < -I; X < O; (2-51.4)

V .y2 <-i; X > 1; y2 -2X < I (2-51.5)

These regions are shown in Fig, (I-I).

In the (X, y2) plane, the union of the regions given by in-

equalities (2-51) include the regions given by inequalities (2-49)

except for some boundary lines. Exluding some small portions which we

4
are going to discuss, in the latter regions n of Eq. (2-50) is a large

positive number.

The right h_nd side of Eqo (2-50) becomes zero on the line X = I

and indeterminate at X = O, y2 = [. Therefore, in the regions described

below, the roots of Eq. {2-50) cannot be very large:

I. The area between the lines

X = + ¢ + 1 (2-52.t)

where

i_l[W(}.y2)]_4>>I; ¢ > 0,

2. The area which is inside the lower branch of the hyperbola

X(-I+2X+Y 2) - 6 W(I-Y 2) = 0

where

[which passes theouth the point X = O; y2 = I

6>>I

Z8
t
I
t
I
I
i

!

I
i
!

!
I'

l
l
I
!
I
!
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Figure (2-1) In verious regions of X-Y 2 plane the sign of n 4

Eq. (l-50).
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or less restrictively the area left to the line

x = (iI{)

whe re

(W{) 4 << 1.

Eq. (2-50) indicates that in the regions of Eqs. (2-49)at angles where

the cold plasma model gives infinitely large indices, the compressible

fluid model gives two refractive indices of equal magnitude, one of

which is real and the other one is purely imaginary.

For y2 > 1; 1 < X < 1 - ¢

and y2 < 1; 1 - ¢ < X < l, the angle e l is very small. This

angular region will be considered in Section 4 by using the Boltzmann

theory and it will be shown that for small values of O, n cannot be

arbitrarily large and real.

At e = e l, the third root of the dispersion relation approxi-

mates to

Goo/GIot = -

The right hand side of this equation is equal to the solution

for the smallest index surface for zero temperature.

y2For = l-X, B, becomes TT/2 and the dispersion surfaces will

approximate to that shown in Fig. (2-2).



propagation attenuation

Bo

Figure (2-2) Dispersion surfaces for warm plasma with y2 = l-X
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equal to

For y2 = I, the largets refractive index become approximately

"'M,4 Sin2Q "

The second refractive index is approximately equal to the larger

refractive index of the cold plasma results except for e << I, For _ << I,

n 2 becomes

J I-__xn2 WX

On the other hand, n I only slightly deviates from the cold

plasma results for a11 values of B.

Figure (I-3) shows the refractive index surfaces for the

compressible fluid model at Y2 = I and three regions of X, namely

X < 1; 1 < X < 2 and 2 < X,
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For y2 = (I_X)2, one of the propagation indices become zero,

as it is for the cold plasma case.

Applying the above informatiOns about the three roots of the dis-

persion equation a qualitative plot of refractive index surfaces for the

compressible fluid p]asma can be made as shown in Fig. (1-4). In this

figure emphasis is given to the plot of the two largest index surfaces.

The smallest one, on the other hand approximates to the inner surface of

the cold plasma case for every va]ue of X and y2. Since the cold plasma

results are well known, some of the forms which this surface has are not

included in Fig. (2-4).

2.4 A Modification of the Warm Plasma Model

Since in hot plasma there may exist some electrons, the

thermal velocities of which are very close to the wave velocity, a

very strong interaction with the wave may be expected. This kind of

effect cannot be found in an analysis based on the fluid model since

in that mode] only averages over all velocities are considered. There-

fore, for a more precise study, particularly for the case of resonance,

the Boltzmann theory should be followed. Moreover, the validity of the

fluid model is restricted to moderately high temperature; because in the

truncation of the transport equations, which are taken as the basic equa-

tions for the study of the fluid model, it is implied that the thermal

velocity _9,kT/m is much smaller than the velocity of light in vacuum.
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In this section, the dielectric dyadic K as studied in. Section

3 will be reconsidered by using the Boltzmann's equation (2-34), Let us

consider only the first order perturbation in all the quantities due

to the applied a.c. field; then following the apprQachof. All.is,

Buchsbaum and Bers (3) in the Fourier transformed domain we have for

the matrix (K)

K = t-j _r
r

(2-53)

_r U-I = U= _r
(2-54,1)

U = (I/_2)

m m

l -j o

0

j 0

o

(2-54.2)

X °° ,F_ ,F2_ J'_exp[-j(-aUr)=--_ J" du wdw dQ [a(O-Q')-b(SinO-Sin|')]][Fij

u=-= w=-_ tl=O It'= -_

[Fij (Q,O' ,w)] =

(I, _w)]d {_

(2-54.3)

wd f expj(_{') wd f expj (ll-I-Q') (2w) I/2d f exp(jll)
W 0 W 0 U 0

wd f exp(-jO-jll')
W 0

wd f exp(-jO+jl')
W O

(2w) l/2d f exp (-j ill)
U 0

(2u)1/2d f exp(-jll') (2u) i/2d f exp(jQ') 2u d f
W 0 W 0 U 0

" (2-54.4)

where fo(W,U) is the velocity distribution function of the electron gas

at equilibrium, without the applied a.c. field; u and w are the longitudinal

and transverse components of electron velocities respectively,
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a = (w-ju-ukonp)/WH;

and b = w kont/_H,

(3)
By assuming f to be Maxwe11ian i e :

O : ' ° "

f = [m3/(8rt3k3T 3) ]i/2exp [-(w2+u2)m/(2kT) ]
0

one can find slightly simpler approximate expressions.for the elements

of the matrix (K) for certain values of E) provided that

In12 k2o kT/(mw2H ) >> 1

and

Re(n2/Inl 2) > 0

Assuming inequalities (2-56) are satisfied, then

1°) for lel << 1

1-j (s/n) Cos2_ 0 j (s/n) CoseS ine

(K) = 0 ]-j (s/n) 0 (2-57)

j (s/n)CosBSinO 0 1-j (s/n)S in2O

where

s = X(tte/w) l/2 = 0.966 x 105 X T-1/2 (2-58)

For the derivation of the above expression the reader is

referred to Appendix 2.

(2-55)

(2-56,2)

(2-56.1)



4O

2 ° ) for e = rr/2

( K)=

I- (s/n) Cot ('rt/y) 0 0

o z- (2sln) Cot(n/y) o

0 0 I-(s/n)Cot(n/y)

(2-59)

The derivation of the above expression is also given in

Appendix 2.

In deriving Eqs. (2-57) and (2-59) we have assumed that the

collision frequency v is zero. Therefore, in both cases (K) must be

Hermitian.* This implies that in (K) of Eq. (2-57) n must be purely

imaginary and in (K) of Eq. (2-59) n must be real.

For the first case, the above conclusion, however, contradicts

the assumption made in (2-56.2) which requires that Re n > I Im n I.

Because Qf this contradiction one concludes that inequalities (2-56)

cannot be sat|sfied together. In other words n cannot be arbitrarlly

large if larg n I _: Tr/4 (of course, including real n),

It may be recalled that the dispersion surface of (2-41)

which is derived from the fluld equatlons has asymptotes at ICosel = I/_.

Thus, for small (D,@2/2 _'-I + Y; i.e. near gyroresonance n becomes an

infinitely large real number at e << I, in contrast to the results

obtained above, Therefore, for a more correct re._ult: near gyroresonance

the asymptotes should be replaced by the numerlcal solutions of Eqs.

(2-53) and (2-54).

WSee Appendix 1.
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For the second case, let

!

s = 2s Cot (_/Y); (2-60)

then one obtains the dispersion relation at 0 = _/2 as follows:

7 '6 '2 3
n - 0.5 s n - 2n 5 + 2.5n 4 - (0.75s + 1) n

' 2 '2 '3
+ 2s n - 1.25s n + 0.25 s = O, (2-61)

The largest three real roots of this equation are computed and

I

listed in Table (1-[) for various values of s In order to examine

whether these roots are consistent with inequality (2-56.1), we first

let s be expressed in terms of temperature:

s = 0.966 x 105 X T-1/2 (2-62)

Then inequality (2-56.1) can be written as

Inl x
"_ >> 1; (2-63)

S

or equivalantly

T1/2 1In x 10 .5 Y- I>> i. (2-64)

Therefore, in general, for given X, Y and T one can compute s

and n from Eqs. (2-6_, (2-60) and (2-6]), as given in Table (1-1).

For those so]utions of n which satisfy (2-63) or (2-64), they are consistent

with the assumption in deriving Eq. (2-61) and must be correct solutions.

Otherwise they shoutd be discarded. In particular for some vatues of X,

Y and T, three cases will be considered in the following.
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n2 n3 Jnmaxls3
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1000.

100.

10.

1.

0.1

0.01

0.001

0.0001

-0.0001

-O.OOl

-0,01

-0.1

-1,

-10.

-100.

"I000.

500 0099800

050 09860300

005 6948011

-001 8381067

-001 883596

-001 8950423

-001 8962663

-001 8963895

000 0000000

000 0000000

-001 8977820

000 0000000

-002 1182282

-005 8128064

050 1005860

500 0100000

-010 03544600

-004 73159400

-002 42433580

001 11019700

000 13886565

000 66307124

000 68789738

-i05Xi.5729802

000.71505412

001,30834450

002.33128050

004,72230080

100.34847000

-7.77026580

-3.33578280

-1 078128

-0.15503451

-0°0]572040

-0.00157290

-0.00015730

_____

0.00157306

0,15650215

1.09581670

3.34049340

7.77062570

00000 50000998

00000 50098603

00000 56948011

00001 83810670

000]8 83598600

00189 50423000

01896 26630000

18983 89500000

00000 00000000

00000 00000000

00189 77820000

00000 00000000

00002 11822820

00000 58128064

00000,50100586

00000 50001000

I

I

I

I

I

I

I

t

t

i

I

I

t

t
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1) If the frequency is near gyroresonance or its multiples, i.e.

_i _ i (2-65)
p e<Y<-p +_'

p = + I, + 2) ..... ,
m

then

0<;¢<<I,

Icot _/Y I >> i.

I
Therefore from Eq. (2-60), in general, s becomes very large,

and the solution of n with largest absolute value can be approximated by

I

s_L + 10 2.5+ 40 (2-66)
n = 2 i 12 ,'-_;

S S S

I

i.e. n _ s /2 as seen in the first and the last three rows in Table (i-I).

Of course, the validity of this root depends on T and e which should

satisfy the inequality (2-64). In case of exact gyroresonance, i.e0

e = O, _ = _ for any non vanishing T.

Physically this may be explained in the following manner. In

the absence of collisions, electrons, e_cited by an e]ectromagnetic

wave at their gyrofrequency (or its mu]tip]es), which is propagating in

the plane of their orbits, become resonant. Under the stationary state,

the wavelengths of the electromagnetic wave must approach zero, for,

otherwise the electron orbits wi]] grow infinitely large and will not

be stationary.



However, once collisions are introduced, in the equations, one

has to replace Y with Y/(I-jZ), This in turn will cause s to be replaced

by

I

s = [2.s/(1-jZ) ] Cot [Tr(1-jZ )/Y ].

Therefore, for

Y = l/p, p = a nonzero integer

I

one would solve for s

!

s = [(2js)/(1-jZ)] Coth (pZ_)

which is no longer infinitely large; hence, neither is [nlmax!

Z) For the special case when

X-,O

and y2 y2 ' I05T- I/2approaches I through the line = 1-X then lim s = (I,23)
X -_.0

y2 = 1-X

Thus in this particular case inequality (2-64) becomes

In/_'l >>_. (247)
I

This condition is satisfied as long as Is I is very small, that is for

very high temperatures. Therefore, in this case the approximate solutions

obtained by solving Eq. (2-61), namely those given in Table (l-l), are

correct.

It is interesting to note that when y2 = l-X, n becomes infinite

at 0 = _/2 for the cold plasma model in contrast to the above results.
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3) If the frequency is not in the neighborhood of gyroresonance

its multiples) and half of its odd multiples, the ratio Is/sll wi]](or

be not very large. Hence, inequality (2-63) will be satisfied if

I

0 < s << I (2-68)

which corresponds to very high temperature or if

XIY >> 1. (2-69)

In either case the approximate solution given by (2-61) is correct

i

although n is not very large, as shown in Table (I-I) for s = 0.1 to

-0.1.

As a conclusion to this section one can state that for the

ranges of @ under consideration n can have arbitrarily large real values

only for 0 = i_/2 provided that T is very large and the frequency is near

gyroresonance (or its multiples).

I
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III. FIELD EXPRESSIONS IN ANISOTROPIC PLASMA

AND CHARACTERISTIC EQUATION OF THE CIRCULAR WAVEGUIDE FILLED
WITH LONGITUDINALLY MAGNETIZED @L_SMA

In the last chapter we have discussed the dispersion relation

in a magnetoplasma of various models. In essence this relation is a

description of the wave number as a function of the angle of wave

propagation, or the longitudinal wave number as a function of the trans-

verse wave number or. vice versa. For a waveguide not all wave numbers

are permissible since the boundary conditions must be satisfied. There-

fore, in the following we shall first determine the form of the field

solution appropriate to the guide geometry; second obtain a character-

istic equation which relates the dispersion relation to the boundary

conditions and third investigate the electron temperature effect on the

wave number and fields. Later in Chapter V this equation is numerically

solved for two different models of the plasma.

3.1 Derivation of Field Expressions in a Cold Plasma

For the case of cold plasma, once the dispersion relation

(2-24.3) is solved, the field can be determined using Eq. (2-18). In-

serting Eq. (_32) into Eqs. (2-31.7) and (2-31.8) one finds

2 k2n 2)d + "
CIj = "J konp('Vj + kxx- o p- x Jkonpkxydy

(3-1)

2
C2j =-J kon p(-vj + kxx-k2n2)dop y "jkOnpkxydy " "

(3-2)

I
I

I
I

I
I

l
I
I

I
I
I

I
I
I
I
I
I
I
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I

I Defin ing

I Sj = (-_v_ + kxx

22

- kon p) (3-3)

I L. = (-k 2 n 2 + kxx )2 + k2 -j o p xy
2 k2n 2 + kxx)Vj(- 0 p

(3-4)

I and making use of Eqs. (2-17.8) and(2-17.9) one has

I

I
I

I

E. = - j k n M. V_j ; j,..,j op_j

where _lj is a solutlon to the quation

(V2t + v_)_j = 0

and the matr}x (Mj) is given by

= 1,2 (3-5.1)

I

I
I

I

I
I

I

(M.)
3

S. -k 0
j xy

k S. 0
xy j

0 0 -L./(k2n 2)
j o p

(3-5.2)

For the case where B is parallel to the axis of the circular
,--o

waveguide the solution _j for finite fields inside the guide has the

following form

rrj = [exp(Jm1_)][exp(yz) ]Jml (vjr)
(3-5.3)

where Jm1(vjr ) is a Bessel function of the first kind.

I

I



Taking the Fourier transform of Eq. (2-6) with respect to the

variables t and z and making use of Eq. (3-5) one obtains the express, ion

for H:

H. = j (ko/Wt_ o) _j _rj (3-5.4)J

where

(Qj) = (ko)
-1

I

k2n2 k L.+k2n2S.
opxy j opj

0

-k2n2S.-L. k2n2k 0
opj J op xy

2

0 0 - kxy vj

(3-5.6)

For n =O,i.e at cut-off one has either
P

1) V2l = kzz

or

2) v_ = k + (k 2 /kxx).
xx xy

For case (l) all the cofactors (A 1, A 2, A3, B 1, B2, B3, C 1,

C2) except C3 become zero. Therefore, from Eqs. (2-17.8) and (2-17.9)

one concludes that Exl = Ex2 = O. For case (2), on the other hand,

A 3, B3, C 1, C 2and C3 are zero. Eqs. (2-17.2), (2-17.3), (2-17.5) and

*The dual of this result for a gyromagnetic medium cob ci_es the one given
by Epstein(8_
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(2-17.6) imply that Ez2 = 0 as n
P

Iimit cases of Eqs. (3-5). For arbitrarily small n
p'

aid of Eqs. (2-24), (3-3), (3-4)and (3-5.):

hence

SI : 0(1)

LI : 0(1)

S2 : 0(1)

L2 = 0(n_)

_tl : O(np),

Ezl : O(1),

E t2 = O(np),

Ez2 = O(n_).

Also it can be shown that for n << 1,
P

Htl : 0(1),

Hzl : 0(np),

Htt : 0(n_),

Hz2 = O(np).

This implies that for n
P

= 0. These results are included in

one has, with the

(3-8.1)

(3-8.2)

(3-8.3)

(3-8.4)

(3-8.5)

(3-8.6)

(3-8.7)

(3-8.8)

(3-8.9)

(3-8.10)

(3-8.11)

(3-8.12)

= 0 case (1) corresponds to a TM mode with only E
z

I
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and H non-vanishing; whereas case (2) corresponds to a TE mode with
_t

only Et/n p and Hz/n p non-vanishing.

For the general case where n. _ 0i. Eq, .(3-5):shows. that Hj
p . .

can be expressed in terms of Ezj:

2

Hzj = -j [Lj/(kon p) ][i/(kxyv j) ]Ezj.,
(3-7)

In contrast when B = O, the waves associated with j = 1,2 reduce to TE
,.-0

and TM modes and E and H become uncoupled.
Z Z

For the case of small B i e. Y << 1 the following approxima-

tions can be made:

2 = k2(n 2 _ {_)
vi,2 o ot

sl,2 = + k2oB

42
L], 2 = + kontol3

2
(Mr,2) = Jko_

3 2
(0_],2) = j koOlnp

m

0

1

0

m

1

0

0

-i 0

0 0

0 0

0 0

1 0

0 n 2 /n 2
to p

3 2
koBno

g

i 0 0

0 I 0

2 2

0 0 -nto/n p

0 -1 0

I 0 0

0 0 0

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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2 2
where n = 1-X-n

to p

2
n = I-X
0

= XY

IB = [X(n4_l_FX+2Xn2)/(l_X) ]I/2
P P

Thus, from this result and Eqs. (3-5.1) and (3-5.4) it can

be seen that once B is introduced into an ionized medium, each wave
,..0

becomes a combination of TE and TM modes which are coupled through Y

as given by the first and second terms of the matrices (MI,2) and(Q1, 2)

in the above equations.

The characteristic equation of the waveguide will now be formed

by imposing the boundary conditions. In the case of a cold plasma the

boundary conditions require that the tangential component of the electric

field vanish on the conducting boundary; i.e.

and

E (P) = 0 (3-9. I)
Z

^
E t(.P)xn = 0 (3-9.2)

where P is a point on the guide surface; _t is the transverse component

A
of E and n is a unit normal vector at the conducting wa11.

Since Eqs. (3-5) imply that in the waveguide the electric

field generally has a tangential component in the transverse plane as
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well as an axial componentand those componentsare not proportional,

in order to satisfy Eqs. (3-9) generally one has to have at least two

waves of one mode propagating in the waveguide, presumably, one corres-

ponding to the subindex j = .I, namely the ordinary wave and the other

one corresponding to the subindex j = 2, namely the extraordinary wave.

Both of these waves have "to have the same prQpagation constantjy along

the z axis, because the boundary conditions have to be satisfied for a11

values Qf z.

In this case the total field in the wave guide will be composed

of

and

H =_IHI+ 82

and the tatio_ betwe_h61 and 82 will be determined by the boundary

conditions. Thins is discussed in th'e next section.

3.2 Derivation of the Characteristic EqHption for the Wavequide Filled

with Cold Plasma :

Let the radius of the circular guide be r . Then the boundary
o

*However, for propagation transverse to the dc magnetization, i.e. _=0, A
waves degenerate into two. One of them has electric field parallel to B z

and the other one has electric field transverse to,B%)(See Eqs. (3-8))° o

This enables us to find the zeroth order modal solutions of cold plasma

filled rectangular guides with _ perpendicular to one of the guide Walls.

For an axially magnetized circular waveguide, when np = O, the ordinary

and extraordinary waves become uncoupled. One of them is a TE wave

and the other one is a TM wave each of which satisfy boundary conditions

separately.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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conditions given by Eq. (3-8) reduces to E
Z

these conditions_ one obtains

=E = 0 at r = r . From
0

[S l(al/)1"o)_ l(r O) - j kxy(mlro)TI l(r o)]81

+ [S2(_/Ero)1_2(ro) - j kxy(m/ro)_r2(ro)]82 = 0
(3-10.1)

[iL l TTl(ro)/(konp)]Sl + [jL 2 TT2(ro)/(konp)]82 = 0
(3-10.2)

For the nontrivial solution of the field (i.e.61_O, 82_0) the

determinant of the coefficients in (3-10.1) and _-I0.2) must be equal

to zero, namely:

S1_{(ro)'J kxy(m/ro)rr 1(r o)

J Ll R1(ro)/(konp)

'(ro)- j (m/ (S2_ 2 kxy ro)_ 2 ro)

J L2 _2(ro)/(kon p)

=0.

(3-11)

This characteristic equation contains the unknowns np and v1,2

and can be solved in conjunction with the dispersion relation (2-24.3).

The roots n give propagation constants of the modal fields that can
P

exist in the waveguide. Once n is determined, the functions _j becomeP

known and from Eq. (3-10) one can find the ratio of (81/82 ) for any

root n and this will complete the determination of the modal waves.
P

For n = O, i.e. at cut-off we have seen that E and E do
p _t z

not belong to the same wave, i.e., one belongs to the ordinary wave and
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the other one to the extraordinary wave, Therefore, no_ the boundary

conditions can be fulfilled by each wave separately. For the TM wave

which has

2

VI = kzz

the following condition

Jm[(Kzz) l/2k =oro ] 0

has to be satisfied; and for the TE wave which has

2 + (k 2
v2 = kxx xy /kxx)

the characteric equation becomes

[m/(koro)](Kxx_jKxy)Jm(nt2 koro)-Kxxnt2Jm+l(nt2 koro) = 0

nt2 = [(x2-2X_l-y2)/(1-y 2-X) ]1/2

The above two equations wilt determine the cut-off frequencies

for TM and TE waves.

3.3 Derivation of Fieid Expressions in a Warm PlasL_la

In Chapter II we obtained the dispersion relation for a plane

wave in a warm anisotropic plasma. Since the dielectric dyadic in such

a medium is a function of both the frequency (_) and the wave vector k,

and since the formulas determined are valid only for k in the xz plane,

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

I
I
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I

I
the characteristic equation cannot be so simply determined as for the

cold plasma case in the last section. To proceed we may consider the

I

I
I

I
I

I
I

field in the guide as a superposition of infinitely many plane waves.

Let us consider a wave propagating in the medium with a cer-

tain refractive index component n along the z axis. Using Eqs. (2-42),
P

(2-44) and (2-45) one can find the three values of n which correspond
t

Let and be those three
to that particular value of np. n_, nt2, nt3

values. The transform theory tells us that, together with the dispersion

relation (2-42), corresponding to the given n one can have infinitely
P

many propagating plane waves, the transverse component of their propaga-

_ion constants having the magnitude of one of the three values of n Q

t

Let us focus our attention on only those waves which for example have

their transverse propagation vector with magnitude k no tl"

In the transve_rse plane oq_.can consider an interval of angle

I
I

I

(tl, ill + dl) and assume that one of the characteristi6_plane waves with

the transverse propagation,vector lying in.this interval have a f;ield t

strength A(Q), where A(_) is some cornplex_function of the rea],variable _.

Since A(|) must be a periQdic function of { with the I_eriod 2TT one can

expand A(tt) in a Fourier series as

oo

I AI,_--ZAmo
m:l:-_

I

I

exp (jm¢) (3- 12)

Let us now consider a certain term of this series, for example

m = m_ and then determine the field at a point P with cylindrical coordinates

(r, _, z). Figure (3-1) shows the geometry of the cross section of a guide.

I



Figure (3-1)
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I

]

The cross section of an arbitrary waveguid_
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Let us consider a transverse propagation vector which makes

1
an angle _ with the x axis of the transverse plane, According to

Equation (3-5) the contribution of this particular wave to the E
z

at P will be

dEz = AmloeXp('jm l_)exp(j kontrSine) exp(-Jkonpz)d_ (3-13)

where 8 is the angle between the position vector of P and the wave front°

Since _ = ¢w3_/2-e

if one defines C with the equation
o

A oexp(Jml3_/2) =
m 1

where for a fixed

d_ = -dg

kont C3(np)[Co/(2_)]d_ (3-14)

and C3 is defined with Eq, (2-18,3)o

Integrating over all values of _ one obtains for Ezj

Ezj = -k n exp( exp(JmlCp)xo tjC3jCoj -JkonpZ)

(3-15)

2TT

(i/2_) _ exp(JkontJrSin_-mle) dg

8=0

(3-16)

or Ezj = -CojC3jkontjexp(-JkonpZ+Jmlq_) x Jml(kontj r). (3-17)

where, as before, the subscript j is added to denote the j-th character-

istic wave of the medium.

I
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In obtaining the solution given above, the Bessel function

is chosen as solution in order to have the field finite in the guide.

The r- and _- components of the electric field at point P

can be found from tee follow'_ng equations:

and

where

dErj =-S'in_ dExj + CosB dEyjT (3-18.1)

dE_pj =-Cose dExj - Sine dEyj (3-18.2)

dExj =-CojkontjC1jexp (-JkonpZJrm1_ p)

x (I/21-r) exp[j (kontj rSine-mle)]de
(3-18.3)

dEyj =-Coj kon tj C2j exp(- j konpZ-l-m1£0).

and C
lj

x (1/2_)exp[j(kontj rSinB-m le) ]d@ (3- 18.4)

and C2j are defined with Eqs. (2-18.t) and (2-18.2) respectively.

Integrating over e again one finds

• n z + Jmlc p)]Erj = Cojkontj[exp(-jk 0 P

x (112)[ ('jClj'C2j)Jml"l(k°ntjr)

-F(j Clj-C2j) Jmt+l (kontj r)]

(3-19.1)

I

I

I

I

I

I
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and

E_0j = Coj kontj [exp (-j konpZ+ j mi_) ]

t

' F(C1j -j C2j ) r) (3-19.2)• Jm 1- 1(kontj

L(1/2)

+(CIj+J C2j )Jml+l (kontj r)I

or

Erj = JCojEexp(-jk n z + jml_o) ]op

[C2j (ml/r) Jml (kontj r)-C1j drJml (kontj r) (3- 20)

and

E(pj = -j Cojiexp (-j ko pnz+Jmlq_)

[CIj (Jiml/r) Jml (kontjr)+C2j drJml (kontj r) ]_ (3-21)

It may again be noted that CIj., C2j ,, C3j in; tli_ above equatiQns are the

cofactors belonging to the j'th characteristic plane wave and are ex-

pressed by Eqs. (2-18.1), (2-18.2) and (2-18.3) o They are

2 2F2 W2F 2 2 22 2_
Clj : ko4npntj [F]-I+n2HI4[Fj(I-Fj)-2Fj j J j nj-y np)n.+ .]+ ( ] (3-22.1)

C2j = jk4yF.n n (I-W) (3-22.2)o j p tj

4 2 2 22 2 2 22

C3j = ko[ 1- nj- np+n.nj p+Fj (-2+n .2+n2+X)+WFjjP (n.+nj P- 2nj n;-X np)2 ] (3 - 22 .3)

I
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where

F. = X/[I-y2-I-W(-n2+y2n2)]
j • j p

(3-22.4)

and (j = 1,2,3).

component for m = m1 is considered.

In general one can define a potential function rTj as

Trj = Z Coj (m)Jm(kontj r)exp (-jkonpZ+jmw)

m=-co

It should be reminded that so far only the Fourier

(3-23.1)

This implies that

3

_r = _ 8j_rj

3=I

is a solution to the differential equation

(3-23.2)

2, 2.. 2 2
(Vt2+ko2ntt)[V t _-k° nt2 )(Vt2+ko2nt32)Tt = 0 (3-23.3)

Then one finds that

where

E. = -jkn M. WT.
^'J op_=j J

(M.)j = [I/(konp) ]

Clj "C2.j

C2j CIj

0 0

0

0

C3j n tj/np

(3-23.4)

(3-23.5)

I

I

I

I

I

I

I

I

I

I

I

I

I
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I

I

Using the Fourier transform of Eq. (2-6) (with zero magnetic

source current), one can find the expression of H. in terms of _. as
_J j

H. = jEko/i_l_o)]_ j v_j (3-23.6)_j

where (K.) is
J

(K.)
J

npC2j -ntj C3j+npClj 0

ntj C3j- npClj npC2j 0

0 0 -(n 2
tj/n p) C2j

From these equations one can see that the expressions for E
zj

and H . are given as
zj

I
Ezj = C3j kontj_rj

I

I

(3-23.7)

I

(3-24.1)

2 2

Hzj = [1/(C_o)]C2jkontjTTj (3- 24.2)

This relation shows that in general E and H exist together.
Z Z

From Eq. (3-23)_one can derive an expression for the convec-

I

I
I

tion current I using the relation

given as

Curl _H - j tu_° _,E=-I~ (3-25)

The convection current carried by the electrons then can be

I = _'o_j v_ (3-26.1)_J
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where (Vj) is given as

-ntjnpC3j+(np2- I)C

(vj)=

lj (-nj2+1) C2j

2-I)C2j -n(nj tjnpC3j+(np 2" 1)CIj

given by

0

0

2 2
0 (ntj/np) (-ntj+1)C3j-ntjClj

(3-26.2)

To complete the discussion_ the expression for the ac N is

N. = -j (¢oko2/e)n (ntjC )_rjj tj lj+npC3j "
(3-26.3)

From the approximate roots of the warm plasmq dispersion

equation obtained in the last chapter, one can conclude that, as long

as any one of the inequalifites (2-46,1) and (2-46.2) together with the

inequality

I WF.jl << 1 (3-27)

is satisfied, the expressions for C.. (i = 1,2,3; j = 1,2) in Eqs. (2-22)
Ij

will be very c10se to those found for the cold plasm a case. In other

words, under this condition, tWOl'Of the cha.!ractleristlic_waves.become
• , .. ,

almost identical to the ordinary and extraordinary waves of cold plasma,

and their normalized value Eij/Coj (for i = r, _, z; j = 1,2) will not
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be very large. For the third characteristic wave, i°e. the plasma wave,

however, Ei3/Co3 (for i = r,cp, z) assumes very large values. Because

Intj[ <<1nt3{

implies that

Icijl << Ici31

j = 1,2

i = 1,2,3; j = 1,2.

be g iven:

For the plasma wave the following approximate expressions can

--_ k4n
C13 = o p[(1-X-y2)/W]3/2

C23 _ Jko4ynp[(1.X-y2)/w]l/2

C33 _ k 4n 2[(]-X-y2)/W].
o p

Under the condition of inequalities (2-46,1), (2-46.2) and

3-27) for _: _:_

one has

n << W2
P

n _ [(.I+2X-X2+y2)/(-I_uX÷y2)] 1/2 + O(W 2)
tl

(3-28. l)

(3-28.2)

W2nt2 = (l-X) 1/2 + O( ) (3-28.3)

nt3 _ [(1-X.,y2)/W] 1/2 + 0(W1,5) (3- 28.4)



cll,2 = k40(o np)

613 = ko40(np) O(W rI'5)

C21,2 = ko40(np)

4
C23 = k° O(np) O(W "'5)

= k 4 0(i)
C31,2 o

C33 = ko40(W-1)

and hence,

E
r

H
r

u

E E
¢ z

I

H IH

I I I
r (p z 1,2

--3

O(_np) ,.: O(np) 0(1) I

/

__Li O(np) O(np) O(I_

N1, 2 = O(np)

64

(3-28.5)

(_- 28.6)

(3- 28.7)

(3-28.8)

(3-28.9)

(3-28.10)

('3 c 28 : 11 )

(3-28.12)

I

I

I

1
I
I
I
I
I
I

I
I

I
I
I

I
I
I
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m

E E E-
r _o z

H
r

I
r

H H
z

I I
q_ z 3

m

O(np)O(W -2)

O(np2)O(W"I)

÷  O(W"I's)

iO(W "2)

O(np)O(W "2)
m

O(np)O(W "2)

N3 = O(n )0(W'2"5).
P

O(np)O(W-1.5)

O(W "2.5)

(3-28.1,3)

(3- 28. 114:)

From Eqs. (3-28) one can see that for n = 0 a11 three
P

waves become TM, having Ez, _t and Iz components only. Remembering

that W << I, from Eqs. (3-28.14) it is also seen that, beyond the cut-

off, the third wave is mainLy a TEM wave with the components E , H
r

I
Z

and

3.4 _riyation of t.beCharacteristic Equation of the Wave_uide: .Filled
with Warn Pl!_ma -- __ :

The boundary conditions require that the tangential electric

field vanishes on the waveguide wall. In.addition, it is also assumed

that on the boundary the normal component of electron velocity vanishes,

so that no convection current flows into the guide wall and the neutrality

of the .plasma i$ maintalne_; To summarize, the boundary condi¢ions are

E_ (P) x _ = 0 (3-29,!)
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E (P) =0 (3-29.2)

^
I (P) n = o

where P represents a point on the waveguide wall and n is the unit

(3-29.3)

vector normal to the guide wall at P.

As discussed in the last chapter, in a warm plasma there are

three waves each associated with a refractive index surface, namely the

ordinary, extraordinary and plasma waves. The total wave in the wave-

guide then can be expressed as

ELI_ 8_,_.+_._5 +-_ (3-30. l)

H =_-6zHz +_z._ +'8_ (3-30.2)

I = 81 h +÷6_ + 8313 (3-30.3)

N = 8_N 1 + 82N22+ 83N 3 (3-20..4)

As a consequenceof the boundary conditions (3_29) in general

all these waves become coupled_. InsertingEqs, (3-2@) and(3-26) Into

Eqs. (3-30) making use of (3-29) one finds three linear homogeneous

*For np =O, as it can be seen from Eqs. (3-28) the three waves can
satisfy the boundary conditions separately and thus become uncoupled.

Unlike the waves in cold plasma, three of them are TM waves having their

electric field parallel to B_o. Therefore, simple modal solutions of

zeroth order can be found even for rectangular waveguides with _ per-
pendicular to one of the guide wails.

I

I

I

I

I

I

I

I

I

I

f

I

I

I

I
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equations for 61, 52 , and 63. In order to have a nonzero solution for

6 i s, the determinant of the set of equations must be zero.

The resulting characteristic equation for a circular waveguide

is very complicated and can be expressed as follows:

where

QI _2 _3

Z 1 Z2 Z3

R1 R2 R3

: 0 (3-31. i)

_j = [m/ _koro)_(-£_j-l-C{j )Jm(n_j kr)-I-C_.nt. Jm+ ]J_ J (ntj k_) _31.2)

;Z. ;:-=('C_.'J ('n.. k r )
j ,,_j ;m " tj ,:o oo

R.=j ,[m/(ko.ro) ][ (- np2+l- n t 2) C:_j +(np2-:: 1) C] ]- C:_j ]Jm ('ntj koro)

(3-31,3)

- [,(np2,t)C_j-O_j ]ntjJm+ | (ntjkor o) (3-31.4)

C_j : F.-j l+(ntj 2+np2)+WFj [1-Fj-2 (ntj 2+np2)+y2Fj)

+ W2F. 2 (n tj 2+np 2- y2np 2)J
(3-31os)
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C_. = -YF. (l-W)
LJ J

(3-31.6)

2+(n 2+np2)np2+Fj (-2+n 2+2n 2+X)C:_j = 1-ntj2 2np tj tj p

2. 2
+ WFj [ntj (ntj2+np2)np2-Xnp 2] (3-31.7)

ntj i L ..... __" ' G2.^7"_". o1,., ...... - 1J-_2/4) - (p3/27)
.r'.,'_. "P/. i,_, L,OS_':_ _'-l)zrr.ttan .... ]}
'_ W 'V 3 ,jL J - -q/2 -

(3-31.8)

• LJ .

o< JcJ/')-("3/").
- q/2

< rr (3-31.9)

!,

G2 = [, I+X+y2]+WF.Z+2X+(3-Y 2) np 2 ] (3-3t. 10)

G1 = E ( 2-4X+2x2+XY2" 2y2) ÷ (" 2+2X- Xy2+2¥ 2) n_ 2 ]
• . P

+ W[(1-2X+X 2) + (-4+4X+2y2)np 2 + (3-2y2)np 4] (3-31.11)

G0 = [(-l+3X-3X2+X3-Xy2+y 2) + (2-4X+2X2+2Xy2-2y2)np 2

+ (-I+X-Xy2+y2)np4]

+ (l-y2)np 6]

( 1-2X+X 2- y2)np 4+ W[ 2+(-2+2X+2y2) n

. , . . ..

(3-3!.12)
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-p/3 = (G2/3t4)2-G1/(3W) (3-31.13)

-q/2 = - (G2/3W) 3+GIG2/(6W2)-Go/(2W) (3-31.14)

The quantities used in the above equations are related in the

fol]owing manner:

c'ij = Cl/(ko4npntj) (3-32.1)

C_ C2/( jk 4---- - n n )
j o p tj

(3-32°2)

4

C_j = C3/ko (3-32.3)

{j = E0j (ro)/(ko5npntj) (3-32.4)

zj =-Ezj ( ro) /(koSntj) (3-32.5)

R = I ( / (_)eokoSn (3-32.6)j rj ro) pntj )

The above quantities are introduced in order to make the

characteristic equation dimensionless.

For j = 3_ we have the following approximations if W << 1:

-,5

nt3 = _ (3-33.1)
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... -I

C_3 = c_
(3-33.2)

C_3 _ -y (3-33.3)

where

-I 2
I

C'3Li = w nP

rv = W/(I-X-y2).

(3-33.4)

(3-33.5)

Hence, {3' Z3 and R3 can be approximated by

= -o.s (-O.SR)_3 XmW- iJm (C_-O"5R) -Y _ Jm+1 (3-33.6)

Z3 = __-lnp2Jm(_-O'5R )
(3-33.7)

i 0 1 5j -0.
R3 = Xmc_- (Y-1)Jm(C_- "5R)+ot- " m(ry 5R) (3-33.8)

where

Xm = m/(kor o)
(3-33.9)

R = k r
o o

(3-33.10)

Considering the case that ntl and nt2 are much smaller than

nt3, Eqs. (3-31) and (3-33) reveal that generally

1 11,I 2I << 1 31 (3-34. I)
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Izll,lz21 << Iz3 (3-34.2)

IR!I, IR2I<< Ia3 (3-34.3)

and also

1_31'1z31 << IR3 (3-34.4)

Expanding Eq. (3-3].1) and making use of Eqs. (3-33) one obtains

the following equation:

[;km O. SJm (Or-0 "5R) -Y°ZJm+1 (r_-O"5R) ] (Z iR2-Z2RI )

+ 0.5n2 J ,-0
o_ P m[_ 'SR)(_2Rl-_IR2 )

+ [)'mtyO's(Y-I)Jm(_-O'sR)+ Jm+I(_-O'sR)](61z2-_2ZI ) = 0 (3-35)

For the regions defined by inequalities (2-47.6), (2-47.7)

and (3-27), _, as defined by Eq. (3-33.4) is very small; hence, in

Eq. (3-35) the first two terms which are O(e 0"5) can be neglected and the

characteristic equation reduces to

Jm+1(_O'SR)[O1Z2-O2Zl] + 0(_ 0"5) = O; R = k° or ° (3-36)

I
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Thus neglecting the term 0(0/0"5), the roots np of the

characteristic equation can be divided into the following kinds:

I) The roots of

{lZ2-O2Z1 = O. (3-37)

This equation can be identified as the characterisitc equation for the

cold plasma case. Let us name the modes which correspond to these

roots as "quasi-optical modes, '_

2) The roots which are determined by

JnTl-I(°t"0"SR) = 0; R ko or , (3-38)

It should be pointed out that in this approximate equation n
P

does appear explicitlY and this shows that np can assume almost any

value as long as the approximation is va.Iid. Thus in an n versus k r
p oo

diagram those roots will be shown by approximately vertical parallel

lines. However, the exact roots which belong to this class slightly

deviate from the approximate solution. As will be seen in Chapter V,

the value of n is very sensitive to _ or k r ; i.e. a large variation
P o o

r °in np may result from a small change in _ or k° o

The modes which correspond to these roots may be called "plasma

mode s. _

/

I

I
I

I

I
I

I

I
I

I

I

I

I
1

I
i

I

I

I
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After having found np, Jm(ntjR)'s can be computed', then the

relative magnitudes of various waves for each mode can be solved from

the set of equations:

_lntlS1 + _2nt262 + _3nt363 = 0 (3-39.1)

Zlnt161 + Z2nt262 + Z3nt383 = 0 (3-39.2)

Rlntl81 + R2nt262 + R3nt363 = 0 (3-39.3)

In the following we shall assume that inequalities (2-47.6),

(2-47.7) and (3-27) are satisfied.

(a) For quasi optical modes, making use of Eqs. (3-39.1) and

(3-39.2), (3-23) and (3-26) we obtain the relative magnitudes of three

characteristic waves as in the following:

83 = 61,2(0z 2) (3-40.1)

I m

E Ezr £0

H H
63 r q) z

I

r cp z_.

=8
1,2

_rO(_ O) E 0(_ 0"5) EzO(_0"5 )-

HrO(GO'5) H 0(I) HzO(_O°5 )

I 0(1) I 0(_) I 0(_ -0"5)r z 1,2

(3-40°2)



74

63N3 = 61,2N1,20(oz -0"5) (3-40.3)

Using the above results we can compare the solutions of cold

and compressible fluid plasma models and conclude the following: For

both models the propagation constants are almost the same. E_, Ez, H r

and H are also unchanged. However, with the introduction of the com-
z

pressibiiity in the plasma E r and H are modified with a considerable

contribution from the plasma waves. The transverse component of the

convection current I., has contributions from the optical waves as
r

well as from the plasma wave. The axial component of the convection

current and the density, however, are essentially due to the plasma

wa ve.

(b) For the plasma modes, Eqs. (3-39), (3-23) and (3-26)

yield the following results:

63 = A],20(_ 1"5) (3-41.1)

63

m

E E E
r cp z

H H H
r cp z

I I I
r _o z

=
1,2

--_rO( ° -0.5) E(pO(1) EzO(])

HrO(1) HcpO(o-0.5) HzO(1)

irO( ° -0.5) ic00(_ 0.5) izO(C_ -L, 1,2

(3-41.2)

63N 3 = 61,2NI,20(_ -I) (3-41.3)
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Earlier in the discussion of Eq. (3-38) we have shown that

the propagation constant n of these modes are very sensitive to the
P

transverse propagation constant of the plasma wave or the temperature.

The above results, however, show that the field components of those

modes are contributed essentially by plasma waves. And these modes

behave almost like TEM waves having E r, H and I as the main field
@ z

components. For this reason, these waves are called plasma modes.

For a given waveguide with fixed B the waves of frequencies
_0

which satisfy

Jm+IE_{[I-(WH2/W2)-(WN2/O02)]/w (Wro/C)_ + 0(_ 0'5) = 0 (3-43)

will belong to these modes. As mentioned earlier, in a plot of n
P

versus frequency, the hybrid modes will be forming a set of lines

which are almost parallel to the n axis. One can see that to excite
P

one of these modes individually will be almost impossible. Because,

even if B and the electron density could be maintained absolutely
_0

constant (which is an impossible condition), a very slight change of

I



frequency would cause a propagating mode to become an at t e nuating

mode.

To summarize, the introduction of compressibillty in the

plasma brings about new modes as well as some modifications on the

fields, despite that the k-IB diagram of a cold plasma model retains

strongly its own identity even for relatively high temperature. It

is most interesting to find that , these new modes have pro-

pagation constants so densely packed that they become almost a con-

tinuous band. Because of the strong modification of the fields, in

general, it is expected that the impedance of an antenna inside the

guide may assume different values, depending on the plasma models.

76
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IV. ORTHOGONALITY PROPERTIES AND POWER RELATIONS

Let us consider a medium of uniform anisotropic 1ossless

plasma and confine our discussion to electrons only; let us suppose

that in th_ medium we have an electric current source __(r), a magnetic

current source _(r), a particle source which creates-dtjO particles

per unit volume per second and a mechanical energy source with a mean

force,_-a(r) over a11 particles. Now we. consider a second medium which

is identical to the first except that the static magnetic field is

reversed i.n direction. To distinguish source and field quantities in

the two media we shall use the subscript "a" for one medium and "b" for

the other. In the following we shall develop a relation for at! field

and source quantities in these two media.

From the Maxwell equations and the first two moment equations

for both cases as stated above, one obtains:

]']_[_[_aX_#_/Pb- TeC_la/No)_b]-_b x _a - Te(Nb/No)( _.._a)]} d_

S

V

+ eTeNbdtJOa-(i/e)4b '_._a]

" [<a "_5 "_a '/_'_b + eTeNa dt_-(I/e) _¢_a " _b ]]dV (4-1°I)



78

where T = _kT/e, (4-1.2)
e

S is the closed surface Of a volume V; N and Nb denote the perturbeda

electron density in media "a" and "b", respectiveIy,Ntheaxaerage density

^
which is assumed to be the same in both media; n is the outward normal

of S.

If one.writes the Maxwell equations and the first two moment

equations in w domain for the medium "a" and than takes the complex

conjugates of all four equdtions one obtains the field equations for the

medium "b." Thus the fields and sources in one medium are related to

those in the other one by the following equations:

-E_': = E,
,.,-a ,..,D

(4-2.1)

H,_'c =

-N_': = Nba

I _'¢ -- I,
..a

- Fw = F,¸
..-a

- Kw =

J_ =

(4-2.2)

(4-2.3)

(4-2.4)

(4- 2 .s)

(4-2.6)

(4-2.7)

(4-2.8)
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These results hold even if the medium contains perfect con-

A A
ductors, since in both cases it is required that E x n = 0 and I • n = 0

on the conductor.

Let us consider as before that B

#

and the guide axis parallel to the z axis.

is parallel to the z axis

Then the quantities in

medium "a" can be written as

E = e exp(vZz ') (4-3.1)

H = hexp (yaZ') (4-3.2)

I = i exp(yaZ') (4-3.3)

N = n exp(y_z') (4-3.4)

t !
where _ is the constant atong z the guide axis as distinguished from y

A
which is the propagation constant along z or B . These expressions wilt

be used later.

Since both (4-1) and (4-2) hold for any two fields as long as

they are solutions to the Maxwelt and transport equations for media "a"

and "b" respectively, one can obtain the following general relation

between two fields subindexed by "m" and "n" respectively in a source

free region enclosed by a surface S:



80

_'_'[r_am x -_anH":_- Te(Nam/No)_an_'_]
S

-[(-Ean:V)X _am-Te (-NanY,'/No),IIam]}. dS,-_ = 0 (4-4)

Now this relation hold for any field quantities in the same

medium; therefore_ for simplicity the subscript "a" may be dropped in

the following discussion.

Let S be composed of the following three surfaces : S
0

.l m m

and SI perpendicular to the guide axis at z = 0 and z = z° respec-

tively and the third S2 coinciding with the waveguide walls as shown in

Figure (4-I). Since on S2, ..mEand ..aE"Y_have vanishing tangential com-

po,nents and I and I "Y_have vanishing normal components Eq. (4-4)

becomes

_F,F{[._Em X ._nH:"-Te (Nm/No).[In_]

S
0

+ [E_ x H
^

- Te(Nn:'_INo)In]},z'ds

+ [EEn:X H._m

H*- Te(Nm/No)IIn _]_n

- Te (Nn:/No)._Im}'zA'ds (4-s)
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Longitudinal cross section of a waveguide
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or using the relations (4-3)

j'j'{[eem X _nh_'¢-Te (nmINo) i*]+[e*._n_n X

S
0

h-T (nn¢/No) iLm]}._z'dS
_xn e

( If I-'-_Z i
Ym Yn "'j o

:z e J'J'[[em X h_-T e(nm/No) i_¢]

S I

|

+[e_¢ X _rnh-Te (n_{/No) i_sn]'z'dS" (4.6)

!

Since z
o

is arbitrary, one has

j';[E_n X _.nh*-Te(n/No) i_]+[_ X h_n-Te (F'n_/No)i_Jn]:dS : 0 (4-7.1)

I I

if Ym _ "_fn * (4-7.2)

where s is any cross-section area of the guide. Actually this result

is valid even if the static magnetic field is not parallel to the guide

axis,

I
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From the Maxwell and the moment equations it can be seen that

if the .quantities with subscripts "m" as indicated below on the left

side column satisfy the equations, then the corresponding quantities

listed o_.jthe right side column also satisfy the same equations:

(_/_z)m -_ -(al_z) m or Ym -"

83

"Ym
(4-8.1)

" -_tm (4-8.6)

-¢_m (4-8.5)

(4-8 7)
_zm

"_m (4-8.8)

-l_tt m (4-89)

Fzm (4-8.1o)

".tim (4-8 11)

"' '_"zm (4-8.4)

I
I (_tm

I _t_

I &m

I _llPzm

I _tm

I °_zm

I _m

I _tm

I _o

II P_

I

I

_tm (4-8.3)

-.. "_tm (4-8.2)
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'W_m " -_zm (4-8.12)

_tm -_ "_tm (4-8.13)

_sm " I_zm (4-8.14)

Now since all the quantities listed on the right side column

satisfy the equations, one can substitute them in Eq. (4-6) for those

_, ^
quantities subindexed "m" and obtain the following relation if z // z or

B is along the guide axis.
.,.0

ij{-[em X _nh*'Te(nm/No-m)i_"]+[[e_¢ X --mh-Te(n_"/Nno--m)i ]}{1-exp[(-ym+Yn)Zo]}

S

.dS=O

and

Thus, i f

(44)

A ^',^
B //z _ (or z//z'), (4-10.1)
,.,.0

_t_

Ym ¢ _n"' (4-10.2)

then one has

j'jr[.[_ x h;';T (nm/;'o)_ ],J'l e

S

+ [e_ X ..mh- Te(n_n/No) ij_]}.dSN = 0
(4- 10.3

where s is any cross-section area of the guide.
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By combining Eqs. (4-7) and (4-10) one can summarize the follow-

ing results for a waveguide with a fixed static magnetization:

Case I) If B

I I

axis, and + ym # Yn _'_

then

!
is not necessarily parallel to z , the guide

(4-ii.i)

;]'[[_m X ..Phi"Te (nm/No_jl)i*]+[eY'..nX h_n-Te (nn_/No) i_sn]} .dS._: 0 •

S

(4-11.2)

• If in addition to the condition

also

-+ Ym # Yn"

^l
B //z (the guide axis)

(4-12.1)

(4-12.2)

;]'[e X .._h:'_-Te (rim/No) i_'_3.dS..n ~: O,

S

Case 2) If

(4-]2.3)

and

then

I I I I

-Ym = Yn _'_ but Ym ¢ Yn ';:

A I

B //z

(4-13.1)

(4-13.2)

;;{- [era X _h:"- Te (n m/N o ,,.n -,) i :"'I

S

+ [_: X h -T (n_"/N)i ]}.dS = 0 •_Jn e n o ,..m ,,_
(4-1:_.3)
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! I I I,
Case 3) If Ym = Yn * but _m @ -yn _ (4-14,1)

then

;WEre X he-T (n /N )i'74-[e* X h -T (n*IN)i l].dS = O.
J_an_._.n e m o _an_ _n _sn e n o _Jn_

s

which is also valid even if B _1_ _ I"

Using the above results one can determine the power carried

by each mode in waveguides.

Let us first consider a field with complex propagation constant

which is neither real nor purely imaginary. Then it is obvious that

(4-14.2)

I I
+ _'m ¢ Ym *' (4- Is, I)

Since the results obtained above are valid for any field m

and n, in the following we consider the relation between the mode and

itself. Then from Eq, (4-11.2) one obtains

Re_';Ee_n X _hf_-T(nem/No) iW]'dS = 0"_ .-_

s

This result shows that fields with a propagation constant

which is not real, carry no real power. This result is true in general,

A,
because Eq. (4-11.2) doesnlt require that B be parallel to z For

..o

a lossless guide this result is expected, because a complex propagation

constant would imply attenuation of real power along the waveguide, in

contradiction to the assumption of losslessness,

(4- IS.2)
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Next, for B
A I

II z

from Eq. (4-12.3) one has

(4-zs.3.1)

(Re and ]_m)J'j'[.emX h_-Te(nm/N o)_zn_i*l.dS._= O.

S

(4.- 1S.3.2)

Thus, with axial magnetization, modes with complex constant also carry

no reactive power.

Let us assume that ym is reel. Since now

Ym = _'m* (4-16. !)

Eq. (4-14.2) lead to the following relation

Re X !.,,-T (r, /N )i*_,.ctS = O. (4-16.2)•..rn e m o ,,.m..' ,-,.,

S

This is also generally true regardless of the direction of B for the
--o

same reason as before. Thus, as expected, the attenuating modes carry
.. ")

no real power flow.

Last, consider a propagation constant which is purely imaginary.

In this case

"Ym = Ym"" (4-17.1)

Then, from Eq. (4-14.3) one gets
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TmJ_J'_'e, X,._mh_"-Te(nm/Nu)_ _ = 0 " (4-17o2)

s

Thus the propagating modes carry no reactive power.*

In concluding this chapter, we may state that, as far as the

real power is. concerned, it is not necessary to consider the complex

roots of the characteristic equation. If the dc magnetic field is

parallel to the guide axis only the purely imaginary _f_s contribute

to the real power. Therefore, in the next chapter only the real and

purely imaginary roots of the characteristic equations of the wave guides

will be considered.

*The energy relations can also be found in P. Allis, J. Buchsbaum and
A. Bers "Waves in Anisotropic Plasmas"(3) with a different approach of

derivation.
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V. .SOLUTIONS OF CHARACTERISTIC EQUATION WHEN THE dc MAGNETIC

FIELD IS PARALLEL TO TME GUIDE AXIS

It may be recalled that the characteristic equations derived in

Chapter III for both the cold and the warm plasmas are even functions of

the unknown np. Since_ as concluded in the last chapter, we are interested

only in the purely real or purely imaginary roots of np_ it suffices to

determine the rea! roots of n 2 in the characteristic equations, the
P

2

positive roots. Of np corresponding to propagating modes and the negative

corresponding to attenuating modes.

5.t Cold Plasma Case

In the case of cold plasma the characteristic equation of the

waveguide can be written as

LJm(nt !koro) Jm (nt2koro)+MJm+1 (ntlkoro) Jm (nt2ko to)

where

+ NJ (n 0m tlkoro)Jm+l (nt2koro) =

nt],2 = [A(Bn 2 + C + U).]I/2
p

(5-i)

L = [m/(V1-V32) ]U(VI-V2) {(VI+V2 )[V22(V1+V3)_VIV2V3

+.vlZ (v3"Vl) ].p2.vlv2v3_}

n 4
M = -[V2RWI/(2V3) ]{(V22-V] 2) (V22. VI2+VIV3 ) P



N

U

.I,_V22 (2V]+V3)+2V12 (V3. V1) _np2

+V! (Vt-V 3)-U_(V22-v 12)np2+Vt]

_V2RW2/(2V 3) ] { (V22- Vl 2) (V22- V12+V 1V3) np4

2 2(V3_V1 ) 2+ _V2 (2VI+V3)+2VI ]np

+ Vt (Vl"V3)+U_V22"VI2)np2+V1]]

,[ (V22- V12+V 1V3) 2np4+2 EV22 (VI+V 3) - V1 (V 1- V3) 2]np2

+ (Vl- V3)2] 1/2

A = l/(2VlV 3)

B = V22-V12-V1V3

C = Vl+V 3

V1 = (1-y2-x)/(1-y2+x2-2X)

V2 = -XY/(1-y2+x 2-2x)

V3 = 1/(1-X)

R = kr
0 0

9O
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In this equation if X and Y are such that

y -i]-xi

V% and V2 and consequently U, ntl, nt2, L,.M and N al! become infinity

2
for any value of n Thus, in_such a case one cannot determine the roots.

P

Also for the case where .

Y = (I-X) I/2,

V! becomes zero and nil' nt2 and L become infinity and again one

cannot flnd any roots of the characteristic equation. On the other hand

as X = I_V3 goes to infinity and the characteristic equation can be simpli-

fied to the following form:

-m(|-np2)Z/2(l-I/Y)(I+I/y3)Jm[(1-np2)I/2koro ]

+(R/Y) [(-l+I/y2)n 4+2n 2-1]J_,[(1-np.2) I/2kp p,. ,_L . oro)] = O.(S-2)

To find the re_I roots of n 2 in Eqs. (5-|_ andS(S-2), the regions
P

of np2 in whiGh the left hand sides of these equations become reaI are

studied. The lower and upper bounds of these regions are determined from

one of the following three equatlons:

nti = nt2

ntl = 0
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For any of these three cases the characteristic equation is

always satisfied, regardless of the value of "k r " and "m." However,o o

in these cases the total fields inside the waveguide are found to be

zero also.

The regions of n 2 in which there might be a root of the
P

characteristic equation depend only on !'X!'and"Y" and not on "m" and

Figure (5-I) shows those regions for various values of X and Y.

2 .
From Figure (5-I) it is seen that the regions of n in which

P

a solutlon for the characteristic equation may exis_ can be at most .two.

The first region correspond to attenuating modes only, since its upper

itbound is always finite and negative and its lower bound is -_. Thus

can be called the region of attenuation. Most of the roots in the second

region correspond to propaga_ing modes except for a few cases where the

.."-_':_._i":at_enuation constants are very small, The:.bounds Of.ithe:,g_e_ond:region..

are finite. Thus, it may generally be called the region of propagation.

In some cases these two kinds of regions are connected forming a region

of propagation and atterr_ation with a positive finite upper bound and

a negative infinite lower bound:. Regions of this type can be called

connected regions of propagation and attenuation or simply connected

regions.

. ,' . , . . ,

As it is seen from Figure (5-1) for smat] x and Y, there

are regions of which the upper bounds are higher than those of other

cases. However, when X or Y or both assumes a large value, generally

larger than 1, the propagating region cases to exist; when X equals to 1_

:ii_,:,: _ .
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the first and second regions become always connected. The determination

of the lower and upper bounds of these regions is a matter of simple

algebra, depending upon the characteristic equation. However, the

terms involved have long expressions in X and Y.

In Figure (5-2) some plots of np versus R = roC_/c are given

for fixed values of X and Y. These curves show how the propagation

constant n changes with the guide radius for various values of w,
P

2

and wH. In general the 1oei of n become approximately parallelP

horizontal lines as the guide radius increases. However, for 0,8

Y < I, the loci become quite irregular.

From these data one can also plot the familier k-B diagram

_r similarly w vs np for fixed values of _, w H and ro. An example

for that is given in Figure (5-3). This diagram shows a set of propaga-

ting modes in a waveguide of radius r with fixed values of the electron
0

_@nsity and the dc magnetic field.

5.2 klarm Plasma Ca_e
,, ,. L

In the last s_-,ction of Chapter !If, th_ characterisitc

equation and its approximat e solutions _r e derived, for plasma filled,

axially magnetized waveguide, including the effect of the pressure. In

this case, similar to the case of the cold plasma model, the real roots

2
n of the characteristic equation can take place only in certain inter-
P

2
vals of n However, the algebra for the determination of the lower

P

and upper bounds of these intervals involves the solution of polynomial

of sixth degree, the coefficients of which are complicated functions
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of W, X, and Y. Therefore, for this case, only those values of X

and Y which are used in Figure (5-5) are considered. For fixed W, X

2
and Y, one finds along the real axis of n at most three regions in

P
2

which real solutions for n in the characteristic equation can take
P

place. Figure (5-4) represents two sets of these regions as a function

of X or Y where X/Y is kept constant for W = 5XI0 -6 and W = 5XlO "4

respectively. For each set of fixed W, X and Y, the first of these

regions has a negative upper bound with very large absolute value

and a lower bound of -_. One can regard them as regions of yery hiqh

attenuation. The second iJ also an attenuating region except that its

upper and lower bounds are finite. The third can be called region of

propagation, although its lower bound iS generally negative with very

small absolute value similar to the cold plasma case. This region also

has a finite upper bound. It is again seen that for large X and Y there

2
can be no real solution for n in the characteristic equation. As X

p

and Y decrease one begins to find regions of very high attenuation,

then regions of moderate attenuation and regions of propagation.

Figure (5-5) shows np as a function of R = ro¢_/c for fixed W, wn and WH.

The computed solutions of the characteristic equation are marked with

small circles and dots. As noted in Chapter Ill, the solutions can be

classified into two categories. Those shown with circles in Figure

(5-5a) through (5-5d) correspond to the so-called "quasi optical modes"

and plasma modes. A comparison of these figures with Figure (5-3)

reveals that most of these points lie very close to the curves in Figure

(5-3). These points correspond to the quasi optical modes and their
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values are only slightly perturbed by the introduction of compressibility

to the plasma, they are roughly independent of the electron temperature.

The points which correspond to the so-called plasma modes, as already

indicated in Eqs. (3-38) and (3-33.5) lie on a very dense family of

nearly vertical lines. These points, being too densely pakced, are not

shown on these figures (except for a few as shown by dots and which cor-

respond to transitions from plasma to quasi-optical modes*). Instead,

as an example, a small section of Figure (5-5c) is magnified many times as

indicated in Figure (5-5e) where the propagation constants of the plasma

modes lie on a family of nearly vertical lines. The sharp bends at the

ends of these lines are resulted from the strong coupllng between the

plasma modes and quasi-optical modes.

*In searching for the zeros of the characteristic equation, as those

shown in Figures (5-5a) through (5-5d), we have divided the abscissa,

namely R, into equally spaced grids. Since the loci of n of the hybrid

modes from a set of nearly vertical lines, their intersections with the

constant R grids will give us some of the solutions for n . Some of these

are shown in the aforementioned figures. Clearly these p_ints, being the

solutions on various loci of n , should not be connected by a curve. If

the grids along R changed, thePlntersections will be changed accordingly.

In other words, these points are but a small part of the solutions for n .D
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VI. MODAL WAVES DUE TO A CURRENT, SOURCE IN, THE WAVEGUIDE

• In thi s chapter we consider the field and power carried in

various modes due to a given electric current and particle source. To

this.end we first apply Eqs.(4-1)"and (4--2)to. asection •of the guide

which encloses the sources as shown in Figure (6-I).. The surface S of

this section is composed of two transverse planes SI and S2 at z = zI ,

and z2 and the guide wall. For simplicity we again assume that the

I

static magnetic field is parallel =to z_ namely the guide axis, After

invoking the boundary conditions one obtains:

PP

,If{rE x H_'-T:(N /N )I_"]+[E_;'.XH-T (N_'_/N)i_]}.ds
4 4 " -,.-q ,..n e q o ,..n ,.,.n ,..q e n o ,.q ..-,

Sl

+;_"{[Ex:lX ,..nH_Te (Nq/No)I_¢]

S2

+ rE_'_-_nX HHq-Te(Nn/No)_l "]]'dS,_= U(q,n), (6-i.z)

where

U(q,npn) _q
V

' ekcexp (yk_Z)- _(_"h_¢exp(ynCZ)

" eTenn_eXp(y*nZ)J_+(t/e)i_"exp(v_'_z).F 3dV.
,,-q --n ,-,q •

(6-I°2)



Z =Z I Z=Z 2

Figure (6-1) Longitudinal cross section of * _veguide with sources
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With all the sources "q" one may associate a potential function

_ --Z _m_Z _J_J(°_°_ ('J_o°_z+J__ (6-_
m,_ j

where J, and m denote the mode indices, j = 1,2 for cold plasma and

j = 1, 2, 3 for warm plasma. In general, the fields on the two sides

of the current sources "q", in the guide, are different from each other.

Therefore, to the coefficients )'m_ a subscript k is added so that k = 1

for z < z 1 and k = 2 for z > z2.

Let us consider the matrix (Mj) which is defined in Eqs.

(3-5.2) and (3-23.5) for cold and warm plasmas respectively. In these

matrices the first two elements of the third row and the first two

elements of the third column are zero. Let us define submatrices (Mjt)

which are made of the first two rows and the first two columns of the

matrices (Mj), Let the transverse field components on S1 be Eql t,

Enl t and Hqlt_ Hnl t and the longitudinal convection current components

be Iql z and Inlz and the perturbed electron densities be Nql, Nnl.

Similarly let all these quantities on S2 be denoted in the same manner

except that the subscript I is replaced by 2. Now let the operator _/t

be defined as

= z = r dr+ I/r)d9t _" dz _0

I



120

Then, for the quantities wlth subscribe q, one can write the

_L'Io *nr01 W, 9 e pr su_K- es-"ons: .... :

_Ikt ='Jko Zkmg, k npmgk Z [MJ t

m,9, j

8j _Tt_lj (npm_k)

z = 0

_p=O

exp (-j konpmg, kZk+ jm_) ]
(6-3.1)

Hqkt = [Jko/(C_o)] _ km_k _ [Kjt

m,_ j

8j _Tt_rj (npm#_k)exp (-j konpmp, kZk-l-J_m_0)]

z = 0

_0 = 0 (6-3.2)

I
_q kz

= -j ko_¢o _ _'m#_knpm_,k_-_V33jSjTTj (npmgk)exp (-J konpm#,kZk-l-jm_)

m,_, j z = 0

_=0

N
qk = "J(¢oko2/e) Z _my,kZ Rjsjmj (npmfjk)exp(-Jkonpmy, kZk+Jm(p)

m,4 j z = 0

q0=0

where

R° _'_

J ntj (ntjClj-npm#,kC3 j) •

(6-3.3)

(6-3.4)

(6-3.s)

In the above expressions if n is real one has
m#,

:_m/':_npm_ k _) < 0 for k = 1
> 0 for k = 2,

'/' I

I

I

I

• I

'I
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whereas for purely imaginary n
pmJ,

f<O for k = l

jnpmJ'k _> 0 for k = 2.

(6-3.7. I)

(6-3.7.2)

Let the field with subscript n be one of the modes obtained

earlier having the following quantities:

n = n
pn pvu

= -jk on Z MI 6]X/tTIj (npvu)eXp(-j k n z+j v(p)_t pvo _t o pvu
j z=O

m=O

(6-3.8)

H = ][ko/(_o)] Z_jt 6jVtrr](npvu)eXp(-jk n z+jv(p)..nt o pvu

j z=O

(6-3.9)

Inz = -J koumonp vu Z V33j 8jrr]

J
pvu ) exp (']ko npvu z+j vq))
Z =0

qo=O

(6-3,10)

Nn = -](eoko2/e ) Z Rj 8j._] (npv u) exp (-j konpvuZ+ ] Vq))

j z=O

(6-3.11)
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Inserting the expressions given by Eqs (6-3) into Eq. (6-1)

one finds:

S1 m,/, j

t
Z = 0

X [ --_.K. ¢" * *(npvu)eXp v_0)]__Jt 8j Vt_j (JkonpCvuZl'J

j z=O

_0=0

. [Teko2¢o 2_°/(eNo )][ _ _'m_1 Z Rj 6j_rj(npm_l) exp (-j konpm_iZl+j m_) ]

m,.£ j Z =0

cp=O

[nP vu Z V3_3j8f_rJt(npvu) exp (Jkonp_vuzl-j

j z =0

=0

v_)]

" [ko2/_q_o)]nP "vu[ Z M*tS@gtTi@(n vu)exp (jkonpCvuZl- j v_)]_J J J P

'j z=O

cp=O

8j 9trfj (npmg,I)exp (-j konpm_iZ1+j m_o)]

z = 0

_=0

-[Teko2¢o2(j)/(eNo) ][ Z R)'_Sj'_J"(npvu)exp(j k n* z,-jv_) ]o pvu •

j z=O

_=0

I

I

I

I

I

I

I

I

I

I

I

I
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• [ Z km,c,lnpm,61 Z V33jSj'rTj (npm,61)exp ('] konpm_,lZl+jmq))]} .dS

m,_ j z : 0

¢0:0

+
/'J'{" [k°2/(('q'J'°)][ Z _'m,/,2npm' 2 Z_J

S2 m, J, j

t "_j vtlTj (npm,62) exp (-j konpmj_2z2+Jm(p ) ]

z= 0

_o=0

Z_y -- "X [ t.8:.':_7_(j_ J npvu )exp(jkonpvuz2_Jv_o)]

j z=0

cp=O

-[Tek°2¢°2¢°/(eN°) ][ Z _'m,2 Z RJ 6]_j (npmj,2) exp (-J konpm_,2z2+Jmq _]

m,J, j z = 0

q)=0

"[npv u V_:3] 6jm']" (npv u) exp (j k n,,. z.,-j vq)) ]
U pVLl h

j z=O
_=0

"[%:/(=%)]"_vu[Z M';_ . ": "_-_t 6JVt_J'(npvu)eXp('Jkonp_vuZJ_-JV_°) ]

j z=O
cp=O

t'6j _t_j (npm_2) exP C-j konpmj,2e2+_Im_ P) _]

z_,O

- ITe ko2%2 o/(eN) _][ _ R*6_.'_*(n )exp (j k :_* z_-j vf, p_ ]
J J j pvu 0 pvu X.

J z '=0

q_=O

"[ Z ;kmg,2npmj_2 Z v33j6]_j (npm,2)exp ('J konpm_,2z2 +Jmq}) ]]

m,9, j z=O
_=0

.dS

= U(qsn.pvu) (6-4. I)
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where

kn ) M_" .....(J o pvu _'j 8_9_],(npvu)eXp(jk n_'_o pvu z-] v_0)
] z=O

_0=0

+ K . [Jko/((_l_o)]>K__. • 8_,X/n_-'(npvu)eXp(]k n* z-jv_),-.q , o pvu

j z=O
q):O

"_] (Ji:oko2/e)ZR:i¢8 _i_i¢(np v u)exp(j kon_"pvuz-j vq_)_eTe[d t

j z=O
_:0

+I..<l(I/e)(j ko_onp vu) Z V_'3j8_"_i"(np vu) exp (jkon*pvuz- j v_0)}d V

j z=O
_=0

(6-4.2)

Let us firs F Fry to determine the magnitudes Xm_ k of pro-,,

pagating modes, namely those for which npm_iS real To this end we

first fix the subscripts V'uv" such as that we have

(a) n = Real.
pvu

Under this condition we consider the following two cases:

(al) aw/bnpv u > 0

which indicates a mode carrying energy in the +z direction. With this

stipulation_ Eq. (6-4) implies that

]';{-[ko/((_o)] i_vu2npvu[Z _j t

s j

(npvu)] x _-_[>-K_ • '" _j t 8jCvtrtj (npvu) ]8j vt_j

j z=O
_=0

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I



I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

125

j,' z.=O _ j" z=O
_o=o _o=o

j z=O i' J

8j Vt_r] (n pvu,)3

z = 0

e 'o2b(eNo)][ZR_c6ikW_ _( PV_)]_" nPvu [_V ]Sjllj( pvu)] }- IT ko¢ ,n vuZ ; 33 n .dS.

J Z= 0 J z'= 0

_=0 _=0

: U(q, npvu)/(npvuko )

Or - [2ko/(_o) ];kvu2

s j

8jVtTTj (npvu) ] x

z=O

_0=0

.',. .'.

"[2Te:kosoZa)/(_No )]}'vu2

= U(q, npvu)/(npvuk o)

J

,F.FRe{[ZRj 8j_Tj(npvu) ]

s j z=O
_=0

[__y_t3j 8_"_'_ (n pv u) ]_}

J

.dS
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n ._' = Rea 1
pvu

pvu > 0

(a2) ,

_w/Bn < 0
pvu

which indicates a mode carrying energy in the -z direction.

case) Eq. (6-4) assumes the form

(6-s.t)

For this

[2ko/(_o) ])'vul]']'Re{[___M"t.

S J

6j%/trrj(npvu) ] x [_ ___jI:K_6L"_%/-_r']t j(npvu) ]].dS._

z=O J

_=0

+[2Teko(:o2(_/(eNo ) ]_vul ]'J_Re{[_ Rj 6jttj (npv u) ]'[_ V_t3j 6_;rr_(npv u) ]}dS

s J z=O j z=O _"
_o=0 _o=0

= U(q, npvu)/(npvuk o)

n = Rea I
pvu

Bw/B n < O.
pvu

Secondly we consider those modes such that n
puv

imaginary.

(bl) If jnpv u > O,

(6- 5.2)

wi11 be purely

I

I

I

I
I

I

I

I

I

I
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then for the mode which has axial refractive index npe f such that

ripef = -npv u

one gets

s j

•sj.j(npef)] x
z=O

_0=O

EZ_tK_(n6e.f)
J

÷[2Teko¢o2_0/(eNo) ]kef I J'J'Re{[_Rj8j_j (npef) ].

s j z=O

_p=O

[_-_V* _ . 8_(n_^_)_'_(np_ef)]}odS = U(q,n*33 (npe-f) .j. v.. ._ pef'

j z=O

q}=-0 .[I/(npefko )3

where U Ds defined wlth. E._I.(6-4,2),

j,npe _ = Real

jnpe f < 0

(b2) If jnpv u < 0

then for the mode which corresponds to npu v where

npe f = -npv u

(6-6oi)

I
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Eq. (6-4) yields to

- [2 ko/((Z$_o)];kef21J'Re [[Z _j t

s j

(npe f) ]x[_ _j t (ni_ef)K!',""" "6_{(n*J pef-)91_*(n¢"t[iperJ"]}.dS,,,8jTTj

z=O j z=O

%o=0 _0=0

_ "" -*(n* * . ._[2Teko¢o2(_/(eNo) ] kef2;j'Re[[ZRjSjrrj (npef)][_V_:3j (ni_ef)8 j pef)rlj (npCef)]} dS

s j

= U(q, n ef)/(r,p,_: r o"

jnpe f = Real

z=O j z=O

m=O _o=0

(6-6.2)

jnpe f > O.
(6-6.2)

Eqs. (6-5) and (6-6) determine the magnitudes of the fields

of different modes for a given field of sources '_ _' inside the waveguide.

These two equations can be combined in one expression as

(km),k) 2 W° (m)_k) = ¢ ( ._J' _K' _ ._F'm)')
(6-7.1)

where the function W can be defined by the equation
0

where

Wo : Re (W I + W2) (6-7.2)

Wl(mZk) = [ko/(U_i_o)](-1) k-I

.I;{[_ _j t" 6jVtrr j (npm_)]X[Z_]: t (np:m_)6_:(np:m_)rT_(np_m#) ] .dS

s j z=O j " z:O

_=0 _0=0

(6-7.3)

I

I

I
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W2(m_,k) = [Teko¢o2W/(eNo )](- I)k-I

J';[[Z RjSj'n'j (npm_)]'[_ V_3j (np_m_)6_'_(np_m_)rt_¢(np_mL)]-d_

s j z=O j z=O
_0=0 _0=0

(6-7.4)

_/(J,K,,__I,mj_)._ : U(J,K,_ ._F' n"_i_m /(npm)ko)
(6-7,5)

and dS has to be taken as

dS = dSzA. (6-7.6)

For a waveguide which is short circuited at one end, say at z = O,

!
similar expressions as Eq. (6-?) can be derived defining a field F

n

instead of the field F which we have been using, by assuming the z
n

dependence to be -2j Sin(konpvuZ) where

npv u = nl_m_.

In this case, the left hand side of Eq. (6-7.1) remains

unchanged, whereas on the right hand side of Eq. (6-7.1.)_and hence on

(- j kon"pthe right hand side of Eq. (6-7,5), the factor "[exp m_Z)]" has to be

replaced with the factor "[-2jSin(konpmgZ)]*".
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The power flowing through the waveguide is given by

P + jQ = (I12) _'_'[Ex __H*"Te

S

(N/N o)_"]. dS. (6-8)

Inserting the expanded expression

F = _ _'m,_ Fm,_

rim,#

where F can be E, H, N or I and (m%) represents mode index, one gets

P + jQ = (i/2) _ _'m£ )'pq-mj5 _×,--pq-re _ #/No)_q]" dS

s m#, pq

Using the orthogonality relations (4-13), Eq, (6-9) can be

reduced to

P + jQ- (i/2) L,_ I_m%I21F[E_jj..m x H*-T (N ZN )I',_:]o dS (6- 10)
..-m% e m£ o...m£

m,% s

which is valid only for the wavegu[de with its axis parallel to the dc

magnetic field. This result shows that if the waveguide modes did not

have the orthogonality property which we made use of, the total power

flow could not be the sum of the power flow for each mode.

The real part P of the Eq. (6-I0) is due to a11 the propagat-

ing modes, i.e. with real n and the imaginary part Q is due to a11 the
P

attenuating modes, i.e. modes with imaginary n
p"
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With Eq. (6-7.1) it is indicated that

'FEEmjB X H *- T (N ./N dS konpm_(Wl+W2 ))I*.3..-.,m_ e m_ o ,-,.m,_ " .-..,

Sk

Hence_one can.rewrite,Eq. (6-10) as

or

P + jO. = (1/2) Z ]Xm_12 konpm_(W1+W2), (6-11)

P + jQ = (I/2)Z t_/ (m_,)12k n (Wl+W2)/I(2Wo)21.o pm_,
m,_,

(6-12)

Let ,I be the input current to a probe in the •guide, theni np'ut

its input impedance is given by

2

R+jX= [,t/IZinput 12]Z _ I_(m_)12konpm_(Wl+Wz)/12Wo(m_k)12
k=l m,%

(6-13)

The expression for W. can be 9iven as
I

W. = (.-l)k[2_/(U4_o)]ko14Gi (i = 1,2)
'" I

(6-14.1)

where GI and G2 are d_imensionless as .given in the following form

k r
0 0

G i = J" ._ idf (i = 1,2) (6-14.2)

f---O
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For the cold plasma case,

(L2' )2Jm2 (nt2 ko ro)

f

2m[m/fl) Jm 2 (nt 1_)- nt 1J m (n t 1])) Jm+l (ntlY) ]

[np21KxyI 2 + (L]+np2Sj)Sj

"J Kxy(L{+2np2S{) ]

2 (nt lJ)) [np21 I 2+(L{+np2Si) Sl ]÷_ nt 12Jm+l Kxy
\

+ (L]) 2Jm2(ntlkor o) r 12m[ (m/J_) Om2 (n t2_)" n t2Jm (n t2_})Jm-l-i (n t2r) ]

[np21Kxy 12 + (L_+np2S_lS_

-JKxy (L:_+2np2S_) ]

2 2 21Kxy I2+ (L_+np2S:_) S_ ]i'J}nt2 Jm+1 (ntiJ))[np
\

+L { L2Jm (ntl koro)Jm (n t2ko ro)I[ (2m/j_) Jm (ntl_)Jm (n t2J0)- n t 1J m+l (ntll o) Jm (n t2f) _

-nt2Jm+l (nt2_) Jm(ntl l)

/_ [_ 2np21 Kxy I 2_ (L_+np2Si) S2 - (L:_+np2S:_)Sl "

l+J np2Kxy (SI+S_)'J (Li+np2S{) Kxy

L -J (L2+np2S2) K_Y]

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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m +L_L2Jm(ntlkoro)Jm(nt2koro) _ni;tnt2J_1(ntl )O_l(nt2 )'

!

E-z%zl N_yl2_(LI+%2Sl)s_

I " (L2+"p2S2) sl ]

I where

= k r

II o
S' " $1,2/ko 2 defined by Eq, (3-3)]

I !,Z [SI,2

L' = L1,2/ko 2 defined by Eq (3-4)].

m t,Z ELl ,2 '

I Let the current distribution j (r,m,z) be given as

(6-is)
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I J(r, K0, z) = I linputl _.i(r, (p, z) (6-16,1)

I
I

Then, it can be shown that the expression for _/will be found ih the

form of

6
= ko linputF(npm_) (6-16.2)

I

I
I
I

where F is some dlmensionless function of the sources.

Inserting Eqs. (6-14)and (6-16) into Eq, (6-13)one obtains

2

R + jX = [i/llinputl2]_ Z ("l)k(I/8_r)(l_o/¢o)i/2"npm1,(Gl+G2)

k=1 rn,),

{IF(npmL)1 2/ERe (GI+G2) 32].

(6- 17)
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As a specific example, If the current distribution J (r,_,z)

in the waveguide is given as

J = [I(z) 6(r)/(2Tt )]z_ (6-1B.l)

one finds that

#( J, m,_)= 0 for m._ 0

( J 0,_,) = - po;_) (n_o_).

J

tt]','(np_o_) ex p (j konpo z) I (z)

r = 0 .dz
_0=0
z =0

For the cold plasma filled waveguide, assuming

k r
o o

I(z)_

X

= 3

input c°s (konp z)

0

n z<_/2for k° P _

for k n z > _/2
o P --

Y = .2

(6-18.2)

(6-19.1)

(6-19.2)

(6-19.3)

(6-19.4)

and assuming that the waveguide is short circuited at z = O, the real

part R of the input impedance is found to be

R = 21.3 (i_o/¢o) I/2 (6- 19.5)

I

I

I

I

I

I

I

I

I
I

I
I
I

I
I
I

I

I
I
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I
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I

I

However, the waveguide has infinite number of attenuating

modes, therefore, the computation of the reactance X requires the

summation of an infinite series.
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VII. ANISOTROPIC COLD PLASMA FILLED

WAVEGUIDES WITH THE dc MAGNETIC FIELD OBLIQUE TO THE GUIDE AXlS

!

Let the guide axis z make an angle _ with the dc magnetic

field B which is parallel to z axis. Without the loss of generality
,-.0

I I

one may assume that B lies in the x z plane and consider that the
,,.0

field inside the waveguide is composed of plane waves of which the

propagation constants are represented by points on the refractive index

surfaces [Figure (7-I)].

With respect to the principal coordinate system the direction

cosines of B will be Sin_, o, and Cos_.

If we fix the azimuthal and axial coordinates of a propagation

I I I

vector n as _ and n according to the coordinate axes x , y , z , then
p

the radial component n of this vector can be determined as a multi-
r

valued function of n and _. The direction cosines of n are then
p N

2 2 2
n Cos_/n, n SinO/n and n /n where n + n = n .

r r p r p

Forming the scalar product of B and n one can find the angle B

between B and n as follows:

(nr2+np2) Cos21_ = (nrCosOSin(_ + npCosol) 2. (7-I)

The dispersion relation between n t and np can now be given
I

below as a function of the medium parameters Ko, K+, K_, K and K1,

all of which can be expressed in terms of X, Y and Z:

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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(7-1) One of _h_ index _rfaceS of the _o|d plasma _here the dc magnetic
fle|d wkes In angle _ _ith the guide oxls Z j.
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Ko(n r2+np 2- K+) (n r2+np 2- K ) Cos213

+ Kl(n r2+np2_Ko )(n r2+np2-K l)(t-cos2e) = 0 (7-2)

where

K = 1- X/ (1-.j Z)
O

K+ = 1-X/(I+Y-jZ)

K = I-X/{I,Y-jZ)
m

Kl = 21[(IIK+)+ (I/K.)]

I

K = 1-x(1-jZ)/E(1-jz)2-Y 2]

Solvlng Cos2l_ from Eq. (7-1) and inserting it into Eq. (7-2)

one obtains

2-K ) (n CosltSinot+npCos(z) 2Ko(n r2+np2"K+ ) (n ri+np - r

+ K "l(nr2+np2-Ko) (nr2+np2-K1) Enr2+np 2- (nrCOSllSincFI-npCos0t) 23 = 0

which is an algebraic equation of six degrees in n . Thus n is a six
• r r

valued function of n and Q. For the uniaxial case this value reduces
P

to four. With a reasoning analogus to that considered in Chapter III,

Section 3_ one can consider that the field inside the waveguide is com-

posed of plane waves with transverse propagation vectors failing into

intervals of angle Q < 61< 0 + dQ where the ma9nitude of the wave can

I

I

I
I
I

I
I
I

I
I

I
I

I
I

1
i

I
I

I



I

I

I

I

I

I

!

I
I

I
I

139

be expressed in a Fourier series in terms of llbecause of the periodicity

in t with a period of 2'rt; i.e.,
oo

Ao(lll) = Z Amo exp(jmll)" (7-4)

Therefore, one can consider Figure (7-2) which is similar

I
to Figure (3-1) and find the field at a point P(r, £0, z ) in the

following form:

I

'):A exp(Jmlil-JkonpZ)dEz'(np'ml'Olr,_'z mlo

Again inserting

exPEJkonrt (np,l) rSino].
(7-s)

I = _ - e + _/2 (7-6)

one gets for E . (n ,ml/r,cp)
z P

Ez '(ml) = AmI° exp(Jmlq;rJko pn zi!+Jmlrr/2).

_F2TTeXp[]kontl (np, {p,e) rSi n0-m Ie]dB.

B=O

To determine the other components of E one can again write

(7-7)

dEr(ml) = SingdExl - CosedEy 1
(7-8.1)

dEs0(m 1) : (CosB)dExl + (Sino)dEy 1
(7-8.2)
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Figure (7-2)
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I

Y

Contribution of a plane wave of transverse propagation index n

to the field at a point P(r, _ z j)

!

X

rl
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I

In these expressions, Exl, E [, and EzI

E i_ and E _ through the following equations:
y Z

are related to E

X

I I

E
x Cosl

E = -SinQ
Y

E 0
Z

I 1

and
P I

E I , Cos_
X I

i =I 0

I
I-sin_

L

SinQ 0

CosO 0

0 I

0 Sinot

1 0

: x|

E (7-9)

y!

E •

Z !

E
X

E
Y

E
Z

(7-10)

By making use of Eq. (7-10) together with Eqs. (2-17.8) and

(2-17.9) One obtains

E J = [Cos_(C1/C3) + Sine]E z
X

E i = ['SIn_(Cl/C3) + C°se]Ez
Z

or

Exi = [(Oleos _ + C3Sin_)/(-ClSin_ + C3Cos_)]Ez,
(7-!0.1)
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and simi'larly

E _ = [C2/(-Cl_iP._ + C3C_) ]Ez,.
Y

Inserting Eqs. (7-10) into Eq, (7-9)one obtains

Exl {C(CiC°sa'+C3Sin_)C°sl_C2Sint]/('ClSina'+C3C°s_)}Ez'

(7-10.2)

(7-11.1)

Ey I = [[- (ClCOS0t+C3Sin_)Sin_+C2Cos_]/(-ClSinaH-C3Cos_) ]E z,
(7-II .2)

C 1, C2 and C3 are now to be determined from Eqs. (2-18.1),

(2-18,8) and (2-18.9) by inserting the following equivalent expressions

for the operators:

d = -jk n (7-12.1)
X OX

where

d = (7-12.2)
y "Jkony

(7-12.3)d = -jk n
Z 0 Z

.n

• ' x

m

Coso_

n I = 0
Y

!

n Sinc_
Z_ -.

0 -Sin_

1 0

0 Cos_

m m

n I
X

n
Y

nz i

I
I

I

I
I
I
I

I
I

I
I
I

I

I
I
I
I

I
I
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and

"_ n
n x i r

nl:n
y r

Cose = -n Sin(re.e)
r

Sint ,= nrCOS(cp-O)

n = n .
z I p

These relations lead to the fo!lowing

n = -n Coso_)int,_-aJ-n-" " Sin_
x r _.v. p

(7-13.1)

n = n Cos(q_.e) (7-13.2)
y r

• ' nz = -nrSin_Sin(co-e)+npCosot. (7-13.3)

After having found the expressions for E and E , one can
r _0

apply the boundary conditions as given by Eqs. (3-8) and find the character-

istic equation for the waveguide. However, Eq. (7-3), being a polynomial

of sixth degree in n one cannot derive an explicit expression for n .
r r

If dc magnetic field is infinitely strong, then K+, K_, K I,

and K1 all become equal to 1, and, therefore, the equation reduces to

a polynomial of fourth degree

Ko (n r 2+n p 2" 1) (n r C°s OS i n_+np c°s_) 2

2 nr2+np2"+ (nr2+n p -K o)[ (nrCos_Sin(y+npCos_)2] = 0 (7-14)
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from which one can derive an explicit expression of n in terms of n
r p

andS.

Moreover, since in Eq. (7-?) nri is a function of _0, Ez l(ml)

is not represented by a single Fourier component in _. One can find

the Fourier series expansion of the total axial component of E by

first summing up E l:S for possible m1:s and then finding the Fourier
z

, and
component say the _,3th, by multiplying the summation by ejJlq)d_0

integrating over _p. This introduces an infinite set of terms into the

expressions of the field components and hence into theboundary conditions.

One can only say that, in case the dc magnetic field is not parallel

to the waveguide axis one can no longer have simple modes such as the

ones one has when the dc magnetic field is parallel to the wave axis.
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VIII. CONCLUSIONS

Waves in a linearlzed homogeneous plasma of unbounded region

are investigated. In order to evaluate the effects of electron tempera-

ture and resonance on the wave propagation, three plasma models in in-

creasing complexity are considered: the incompressible (or the cold)

plasma, the compressible (or the warm) plasma, and the microscopic

model, The first model is the usual one by treating the plasma as a

dielectric; the second is based on the transport equation; and the

third is based on the Boltzmann equation with assumed collision integral

and velocity distribution at equilibrium,

It is found that the compressibility of the plasma introduces

some modifications to the refractive index surfaces. First there exist

three surfaces instead of two as in the cold plasma model. The smallest

surface differs little from that of the cold plasma, only by a quantity

dependent on the fourth power of the ratio of the acoustic speed to the

light speed in free space. Parts of the other two surfaces correspond

to the second surface of the cold plasma since they degenerate into the

latter as the electron temperature approaches zero. Now it is found

that the surface can extend to infinity only when y2 _I_ in contrast

to the cold plasma case. In.fact for this case the asymptotes are at

angles (measured from the magnetizing field) larger than those of the

cold plasma model. In the neighborhood of longitudinal direction the

refractive index of the third surface is real and nearly equal to that

of the cold plasma. In the neighborhood of transverse direction the
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refractive index of the second surface is purely imaginary and nearly

equal to that of the cold plasma in the same region.

The effect of the electron velocity distribution on the re-

fractive indices is analyzed, based on the aforementioned Boltzmann

equation approach. Because of the complexity, only the propagation

in two interesting angular regions, namely along and transverse to the

static magnetizing field are considered. It is found that for propaga-

tion in the general longitudinal direction the refractive index cannot

be a large real number in contrast to the results of the warm plasma

model near gyroresonance. Furthermore it is found that from the

Boltzmann equation approach the refractive index in the transverse

directio_ becomes infinity at Y = I/p, _ = an integer.

Waves ]_ a circular waveguide $i|led with either cold or warm

magnetoplasma are studied. When the magnetizing field is parallel to

t_e guide axis the modal waves can be expressed in terms of known

functions, using the boundary condition that on the guide wall the

tangential e]ectric field vanishes, and for the warm plasma the morm_1

electron velocity also vanishes.. Thecharacteristic equations for both

plasma models are numerically evaluated and compared. It is found that

the longitudinal propagation constants of the warm plasma model consists

of t_vo types. The first type can be identified as those of the cold

plasma but slightly perturbed by a quantity dependent on the ratio of

the acoustic to the light speeds in free space. However, some field

components associated with these modes (Ep, H ) differ substantially

for the two plasma models. Modes of the other ty p e eris._s from the

|

I

I

l
l
!

!
B
l

I
l
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compressibility of the plasma and the additional boundary condition on

the normal electron velocity. The longitudinal propagation constant

of the second type change rapidly with the guide radius in wavelength

and are so densely located in the Bril]ouin diagram that they resemble

a continuous spectrum.

For a given source inside the waveguide orthogonality rela-

tions between the model solutions are used to determine the relative

power distributed among various modes. Hence, the real part of the

impedance of an antenna placed in the guide can be computed. However,

as stated above, in general, the fields for the cold and the warm plasma

models differ even if they belong to the modes of nearly equal pro-

pagation constants. Moreover, the warm plasma model brings forth

additional modes. Therefore, it is expected that the antenna impedance

will be different for these two models.

The study of an anisotropic guide with an oblique magnetizing

field shows that the modal solutions cannot be expressed in terms of

known functions, but solutions in terms of series expansions of ele-

mentary functions may be used. However, even for uniaxia] cold plasma,

the expressions become very involved.

I
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APPENDIX I

ENERGY RELATIONS AND RESTRICTIONS ON THE MATRIX (K)

In part I we have considered three plasma models: the cold

plasma, the warm plasma based upon the transport theory or the fluid

model, and the warm plasma based upon Boltzmann theory. The discussion

of.all these three models can begin with the assumption of a one particle

distribution function f for every species of the ions of the plasma,

which, in the most general case can be a function of the velocity and

position of the particle and time. For the cold plasma case, however,

f reduces to a _ function of the velocity vector as long as the medium

is not perturbed.

For the distribution function f the Boltzmann equation should

be satisifed

3

dtf + vdI X.

i=1

3

f +_ (Fi/m) d_.f = (_f/_t)coilisions
I I

i=l

(At- i)

where V. is the i
I

th
'component of the position vector v of the particle,*

N

.th
x. is the i

I

.th
F. is the I
I

component of the position vector r of the particle,

component of the force acting on the particle,

m is the mass of the particle,

(2if/Bt) coIIi:sions is the collision integral.

*In this. appendix_the:letter v is used for the_veloci:ty ofindividual ions.

HoWever, in the main text the_letter v is used for the fluid mode] warm

plasma to represent the average velocity of ions as it will be defined"

by Eq. (A1-2.3)
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Multiplying both sides of Eq. (AI-I) with a function of v,

which for example can be expressed as Q(v) and integrating over the

whole v space one can derive the following equation: (2)

3 3

I I

i=l i=l

OO

N = Lfdv

--- ,__

oo

= J'(_fl_)t)Col Iqd_, (AI-2.1)

--CO

(A1-2.2)

(At-2.3)

This equation is obtained with the assumptionS Chat. F. is
I

n.ot**a f/m-ction of v. and as v approaches to infinity f (v) approaches

tO zero with a sufficient arder of v such that

dv.(fF_Q)dv. -- 0.
I

_y first taking Q = 1 and second Q=.v one 'gets the first and

the second _t)ltzmann transport equations which are also ca-l.l_d the firs.t

and second moment equations.

dtN j + V (Nvj,) = 0 (A!-3)

?'_ .the -main text ,. for flu'id model war'_n plasma, fo,r cony.en ience, t.he
lette_ V .is _Jsed for-_.

e%a

_'_'_Although in the plasma we consider F = F(v) still F. # F.(v), becapse
we have. . .... _ = :_

F = -e(v x BBo).

I

I
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and
3

dt(N.m._)+Z (Njm_)J J_: dx i J'_"_

i=l
3 "_

-N. _.x. = (_)f/_t). ,.m_vdv (AI-4)j , , _o1_L]_ ._
.00

i=1

The Maxwell equation for the Curl of H will now take the form
N

where

V X 14= % dt_E+ Z I. + J

J

_j = qjN.'v.J-_J

(A1-5)

qj is the charge of the j and species of ion and _J represent the electric

source current.

The second Maxwell Equation remains unchanged, namely

V X _E= -l_odt _H- _K (AI-6)

where K represents the magnetic source current.

Assume that the applied uniform static magnetic field B
_o

is sufficiently strong so that the following Iinearized relation is valid:

ZF×--q (E+3 x_)I I i ,-. _ °

i

Dot multiplying Eqs. (AI-3), (AI-4), (AI-5)and (AI-6)with

k_T_'Nj/Noj,_.v.Jqj,.jjj_.._ -E_ and ._H'respectively and adding the four equations

one finds (2)

ZV CE X H + _(k_N )] =

J

m.-v.2+_(l/2) (_k/N )Tj-Nj 2]-dt [(1/2) I_,,,_ +(1/2) %._ _(1/2) Noj j~j oj

J J
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-J " E- K • H _ (AI-7)

where Noj Is the equilibrium value of N. For • source free medium,

. the last ,two terms of the right hand side of the above equation drop._

For a cold plasma, inserting T = 0 one finds the conservation

equation of the electromagnetic waves, which is the expression of the

Poynting theorem. In that case the terms E X H, (I/2)_ H2, (I/2)¢ E2

and--_ (I/2)Nojm.'V.2jJ represent the density of power flow, the stored
.J

magnetic energy density, the scored electric energy density and the

kinetic energy density gained by the unit volume of the fluid of ions,

respectively. On the other hand, for a medium where there are no

electromagnetic fields, i.e., E = 0 and H = O, Eq. (AI-7) reduces to the

expression of the conservation theorem for acoustic disturbance of the

ion gas. For that case the terms _k T.N v. [.(I/2) N .m.-_.2j j _J' oj j j
J

_j )T:N.2 would represent the density of energy flowand (I/2) (_, k/Noj J J

due to the pressure gradient, the kinetic energy density and the thermal

energy density of the compressible fluid, respectively. In the presence

_'¢For a more general case one can add to Eq. (A1-3) a source term which

creates particles and to Eq. (A1-4) a source term which represents

fources applied on the particles other than the electromagnetic forces,

and thus have a modified form of Eq. (AI-7). For the purpose of this

text, however, this is unnecessary.
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of the electromagnetic field, and temperature, the terms on the right

hand side of Eq. (kl-7) would have the same meanings as explained

above. The left hand side, which represents the total energy flow density

can be called the modified or generalized Poynting vector.

In a monochromatic wave, by using the complex notation,

Eq. (A1-7) can be written as follows:

(1/2)v. [_ x H2'_- (_,gT]/Noj)Nj Tj/qj ] =
J

(1/2) H_'_ . (.'J_oHH)

Z "T'. _).-(1/2) .._E .(-J_oEE "_ + qjNojVi')

J

-(I/2) Z(,_T]/Noj)Nj (j_ N_)

J

J

-(t/2)J* • E- (1/2) K H*. (AI-8)

In the right hand side of Eq. (AI-8) the real part of the

second .term is the energy lost due to the electric field and current

flow and the real part of the fourth term is the enrgy lost due to the

motion of particles in the presence of a pressure gradient. Accordingly,

the sum of the second and the fourth terms will be the total energy

I

I
I

I
I
I

I
I
I

I

I
I

I
I
I

I
I
I
I
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loss due to mechanic and electric forces, the terms E qj Noj v.*j

cancelling each other showing energy transformation from mechanical

form to electrical form or vice versa. Since we assumed that there are

no collisions and hence no energy contribution from the mechanical side

to be consumed as ohmic losses, the second term must be purely imaginary.

In case of a plane wave, where one can use a diadic e, then, one must

have

Re[E •(j_)*]_O._ (AI-9)

From thls one finds

E • (-jwe*).E* + E • jwcTE * m 0

or

E (.j_ (¢,_¢T)"E*_ O.

This requires

T
¢_- _ = 0

or

¢ = (¢T)..

I
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APPENDIX II

THE DERIVATION OF THE MATRIX" (K) A'CCORDING TO

BOLTZMANN EQLIAT-I_B_tAPPROACH

THE

where

I

Let _rij denote the (ij)th element of the matrix (ar')

i and j canbe 1 or 2 or 3. Using the transformation

O = xi+ y (A.I-I)

form Eqs.

_' = -x + y (AI-2)

(2-54.3) and (2°54.4) one attains that (3)*

O.r_12' = -._ .. [2e2N/(mwH)](l+Sin2eB/_(Sin2e)Iil. _ (A1-3.1)

, = , = -[2e2N/(m_H)]Sin2B(B/BO)I 3_rl2 _r21 (A1-3.2)

_, _, = 2/(2U_H 2)rI3 "_r31 °'Jr23 ' GJr3_ = [Ne2/(mu}) ][ko2n2vT ](Sin2e)I21

22_
23 32 ' '

(AI-3.3)

a' = 2[e2N/(m(_l ) ][t÷(2np2/VT ) (_/_np 2) ]I 3• r33 '
(A1-3.4)

whe re

oo

I i |= J' exp {-j 2x:[ ('U_"j v)/cull)4"1 ] }exp [-.2 (VTkon/u_H) 2 (x2Cos2B+S i.n2xS i n2e) ]dX
_J

12 o (A!-4)

I2212 =" _oeXP [-j 2x[ ((_-jv)/_H_'I/2)<2x ]exp [-2 (VTkon/_l) 2 (x2Cos2e+$in2xS, in2,)]l_x

(AI-5)

_'_Inthis section I. is used to indicate the integraIs only.
J
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_0

3 I I[ exp [-j.2x ( m"j._)/w H ]exp [- 2 ( v T kon / w H) 2 ( x2 Co s 2 g+S i n2xS i n2 g) ] dx

0 (A1-6)

where VT = (kT/m) l/2 , (A1:-7)

Let vll = v _r jw H (A1-8.1)

12

and v_1 = v _1-j (1/2)_t (A1-8.2)

then one can write

13 = 13 (8, v) (A1,-8.3)

I11 = 13 (0, vl)1 (AI-8.4)
12 12

I21 : 13 (e, v2t" (A1-8.5)

22 22

If.oae stipulates that

I ko 2n2 kT/(nl=H 2)] >> 1

13 can-be evaluated using the method of the steepest descent at points

where the exponent of the integrand has saddle points in the complex

plane.

If one defines:

f(z) = -(n2/Inl2)(O_z 2 + iBSin2z) (A 1- 9)

where ot = Cos20 (A1- 10)

I
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and B = Sin2e

saddle,Foints will be at the zeros of d f(z) which isthe Z

(A_2- 'I I )

Let

dzf(Z ) : -(n2/[nl2)[2c_z + IB Sin2z].

2z : Xl + JYl = Zl

then Eq. (A2-12) can be written as

_x I + IB Sin x I Cosh Yl : 0

(A2- 12)

(A2- 13)

(A2- 14.. 1)

_Yl + B Cos x I Sinh Yl = 0.
(A2- 14.2)

Equations (A2-14) can be solved using graphicat method. From Eqs.

(A2-14) one derives

(A2- 15.1)
xl/tanxl= Yl/tanh Yl

and - ((B/e)s inhy]/y 1 = t/Cosx 1 (A2- 15.2)

In Figure (A2-1) the curve corresponding to Eq. (A2-15.1)

is plotted in xlY 1 plane. This curve is not periodic with respect to

The distances between the zeros of the curve and the odd muttiples
I"

of (_/2) decrease monofonically as (xI) increases. The curves in

Figure (A2-2) which are periodic with respect to x[ represent the plot

of Eq. (A2-15.2). The curves in Figures (A2-I) and (A2-2) a11 are

symmetric with respect to the Xl and Yl axes. In Figure (A2-2.b) the
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value of Ylo is the solution of the equation

-I

S i nhYl 0/Ylo = (_/_)

and It increases as (13/e_) decreases and becomes arbitrarily large as

(_/0) becomes arbitrarily small.

To find the roots of Eq. (A2-12) one should find the inter-

section of the curves plotted on Figures (A2-I) and (A2-2). One of the

intersection points is (0,0). The other ones depend upon the values of

the parameter (13/0_). For very small values of (IB/_) they are complex

conjugate pairs the abscissa of which are very close to multiples of

and the ordinate of which are_very large. As IS/_ incr.eases the devia-

tions of their abscissa from these odd multiples of n increase and the

absolute values of their ordinates decrease. For F_,': = 4.61 ,_hich

corresponds to an angle 0 " 65°, the first four roots which are closest

tothe Yl axis become two real double roots and as i:"/t( still increases

we find four-real roots movjng on the real axis. As IB/_ still increases

the next four complex roots closest to the y 1 ax.is become two real

double roots and further they change t_o four real roots:and the pro-. , .': . , . .

cedure continues in that manner. As Ij/c_ becomes arbitrarily large all

the complex roots within same finite interval (-Xl_+ Xl) will become

real roots within the same interva|. Therefore, for 0 = 900 we will

have infinitely many real roots and no complex roots.

For 0 = 0 or (Ij/cv) ,. 0 we have only one root at x I = O,

Yl " O. The contribution of this saddle point to the integral 13 can

be calculated as follows:
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Let n be written as

n = Inle j_

then one has

f_z) : -z2exp(]2il)

In the vicinity of

z : 0
o

if one wrltes

Z = r e ]_
I

where r <wC I

one has for f(z)

f(z) = - r2exp(j21),:

or f(z) "_' - r2[Cos2(_+l)+j Sin2(_+l)].

I Here for

d {Re[f(z)]] = minI r
one has to have

m . cos2($_+_) := .I

or

I
_/+ _= P_

I

I

I

which implies

$ = I_-.!i.

Inserting P = 0 to Eq. (A2-19) one has for 13

13= (w) I/2exp (-j _0)/(4t i) 112
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(A_- 16)

(A2- 17)

(A2- 18)

(A2- 19)

(A2-20)

I
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2
where t 1 = 2VT 2 ko21n12/_l (A2-21)

which implies

13 = (,/4ti) I/2 (A2-22)

where t - 2VT2ko2n2/wH 2 (A2-23)

or

that

13 = (_r) 1/2_1tl vrB-konVT). (A2-24)

Since Eq. (A2-24) cJeesnit include v for 0 =0°, one can write

II = 12 = 13 for e = 0: (A2-25)

ins_kting the expression found for II, ]_2 and 13, one has

I

i (_I_)
_r

D --.
m

1 0 0

0 1 0

0 0 0

(A2-26)

When one increases the angle 0 slightly from zero, one finds

inflnitely many saddle points as mentioned above. Let x+jyo = Zo be

one of these saddle points. Then one has

" (e Zo2+B s in2 Zo) = -e( Xo2-yo 2)" B( Si n2 XoChZy o- Cos 2×0S i nh2yo )

l
-jE2_XoYo+- _ Sin2x Sinh2y o]O
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Under the condition we had, namely

Re(n2/l nl 2) > 0

one has Re[f(z)] >> I, although at the point (0,0) we had Re[f(z)] = O.

Therefore, after having left the fir st saddle point, the path of the

integration must climb over a very high hit1 of Re[f(z)] in order to

pass through the second saddle point. This climb causes the first

saddle point to loose its significance and the second saddle point

makes the value of 13 arbitrarily large for arbitrarily large values

of tI which was defined by Eq. (A2-21). However, a look at Figure

(A2-3) shows that, the difference between the integrals 13( e = O) and

I3(0 = ¢) where il is arbitrari]y small should be arbitrarily small and

that for very large values of tI the main contribution to 13 must still

be due to the saddle point at the origin. Therefore, for very small

values of 0 the path of the integral must be kept away from the hills

of the other saddle points and kept on the real axis. For the evalua-

tion of 13 a procedure similar to the one we had for 0 = 0° can be

taken. This time instead of Eq. (A2-16) one has

f(z) = -(otz2+l_Sin2z)exp(j2_)

Similarly, Eq. (A2-17) changes into

f(z) _' -r2(_/rl_)exp(j2_). Hence for 13 one has

13 = _- (_H/F_ konVlv/_ ] (A2-27)
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which again is independent of v and hence one again has

.I1 = 12 = 13, e << I. (A2-2B)

((_Ir)= (s/n)

Using Eqs. (A2-27) and (A2-28) we find the matrix _' as
r

2 2
1-(1/2) Sin e -(1/2) Sin e -[I/(K_)]sinze

- (I/2) $in2 e I- (I/2) Sin2e - [,I/(2_)]S in29

-[I/(2_)]Sin_e-[I/(RV_)]Sin2(_ Sin2g

(A2-29)

For the case 0 = go° the saddle poin,ts on the rear axis ,hav.e

their abscissa as
: i

z = P_/2 P = 0,1,2,
P

Corresponding to these poin.ts one has

Idzgfl
Z = Z =2

P

j -nZ!lntZ,.' for. e = 2m+1
f) = , (A2-30)

Z_ZP I./ CJ fqr P = 2m

k_

Eq. (A2-30) shows that the main contribution to the integral

comes from the saddle points at which p is an even integer. In the
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vicinity of the pth saddle point Zop, f(z) will be

f(z)= -(n2/lnl2)[f(Zop)+(Z.Zop)f_(Zop)+....]

inserting n = Inlexp(ji)

and Z-Zop r exp (j ¢)

one finds for the minimum of dr[Ref(z) ]

= P(_/2)- !

Summing the contributions of all saddle points over the real

axis one finds

% = (I/2)'(_/t)i12÷ _ (_/t)l/2exp[-J (w-j v) 2m_/g} H]

m=l

1/2 .
" Z (_/t) exnL-t+j (rd2).j (w-j v) (2m+l)rd_]

_0

Assuming very little loss due to coll sions which can be

arbitrari,ly stoat1, one can take

v _ 0

in which case 13 converges to
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I I3 ^,_2 _ 1 1

I

I
that inequality (2-47) is valido

o o o

"2ko"n'_vT " .rr
2 +-JS)

exp[-j (_j V)_H_exp C WH }

2 2 2/_H2 )• n vT is due to the saddle points atthe term including exp(-2k o

which f(z) is other than zero and can be neglected since we assume

I

I one finds
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Using Eqs. (A2-8.1) and (A2-8.2) one can evaluate II and 12 also.

Inserting the values found for the elements of the matrix (_)

I

I
I

I

I

, , 2__Sf3
O'rll = (_r22 = n L4 +

, , =2s{_ I°'r12 = Gr21 n

• 3 2k 2 2 2 k2n2v 2
3 -i(w'-iv)_ _ j[_ + o n2 VT ]exp--° 2 T.

-_exp WH WH WH

2jSi,_(_r iv)_

=H

}

2k 22 2 2
n vT _ _ 2k2on VT2

._o...__ _E_+_o, _ox_L--
wH WH

+_' 2jSi.(w'iv)Tr
wH

I ! : I _ I ._ I ---- 0
O'rl3 _r23 O'r31 _r32

I

I

I
2s_0" +

r33 n

exp-'J(_-iv)rr' - j exp

(J_H k.

2j S i,, (_ i,J)-
mH

2 2 2
-k n v T

0 ....

2

].

I

I

}

I
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